The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp

Archive ouverte

de Freitas Pereira, Maira | Narvaes da Rocha Campos, André | Anastacio, Thalita Cardoso | Morin, Emmanuelle | Brommonschenkel, Sérgio Hermínio | Martin, Francis | Kohler, Annegret | Costa, Maurício Dutra

Edité par CCSD ; BioMed Central -

BackgroundPisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism.ResultsThroughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as “Internal spores”, IS) and external free basidiospores (hereto referred to as “Free spores”, FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to β-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis.ConclusionOur results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.

Suggestions

Du même auteur

Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization

Archive ouverte | Plett, Jonathan | CCSD

International audience. Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been descr...

Facing global change. Facing global change: The millennium challenge for plant scientists

Archive ouverte | Basso, Veronica | CCSD

We entered the Anthropocene with the industrial revolution. This geological era is defined by the unprecedented impact of human activities on the planet's geochemical cycles, making us the main driving force of Earth environmental...

Impact of abiotic stresses on ectomycorrhizal symbiosis and role of ectomycorrhization on tree responses

Archive ouverte | de Freitas Pereira, Maira | CCSD

International audience

Chargement des enrichissements...