0 avis
Metabolomic and phenotypic effects of ocean acidification on cuttlefish differ across early life stages
Archive ouverte
Edité par CCSD ; Elsevier science -
International audience. Ocean acidification (OA) affects the physiology and behaviour of some marine organisms, impacting their development and metabolism during vulnerable early-life stages. Among them, the embryo of the cuttlefish develops for about two months in encapsulated eggs with harsh perivitelline conditions of hypoxia and hypercapnia, potentially worsened by OA. In this study, common cuttlefish Sepia officinalis embryos and juveniles, were exposed to five pH conditions (pHT 8.08 to 7.43). Growth, development and metabolite profiles were explored during the embryonic development period up to 10 days-post-hatching. Our results show delayed embryonic development and decreased hatching success at pH 7.43, but no effect on juvenile weight upon hatching. The 1H Nuclear Magnetic Resonance (NMR) spectroscopy revealed that decreasing pH affected metabolites profiles in embryos until a metabolic suppression was observed at pH 7.43. The O2 consumption in 10d old juveniles did not change with pH whereas metabolites indicated a switch to anaerobic metabolism under low pH. Overall, our results suggest that the transition from the encapsulated embryonic stage to the free juvenile life shapes a metabolomic reprogramming more drastically than ocean acidification.