Functional benefit of CRISPR-Cas9-induced allele deletion for RYR1 dominant mutation

Archive ouverte

Beaufils, Mathilde | Melka, Margaux | Brocard, Julie | Benoit, Clement | Debbah, Nagi | Mamchaoui, Kamel | Romero, Norma | Dalmas-Laurent, Anne Frédérique | Quijano-Roy, Susana | Fauré, Julien | Rendu, John | Marty, Isabelle

Edité par CCSD ; Elsevier -

International audience. More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as "RYR1-related myopathies." There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.

Consulter en ligne

Suggestions

Du même auteur

In vivo RyR1 reduction in muscle triggers a core-like myopathy

Archive ouverte | Pelletier, Laurent | CCSD

International audience. Abstract Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in red...

From gene to cell: Functional validation of RYR1 variants. Du gène à la cellule - Validation fonctionnelle des variants RYR1

Archive ouverte | Reynaud Dulaurier, Robin | CCSD

Genetic screening of rare diseases allows identification of the responsible gene(s) in about 50% of patients. The remaining cases are in a diagnostic deadlock as current knowledge fails to identify the correct gene or determine if...

In vivo RyR1 reduction in muscle triggers a core-like myopathy

Archive ouverte | Pelletier, Laurent | CCSD

International audience. Abstract Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in red...

Chargement des enrichissements...