Distinct Metabolic Profiles of Ocular Hypertensives in Response to Hypoxia

Archive ouverte

Langbøl, Mia | Rovelt, Jens | Saruhanian, Arevak | Saruhanian, Sarkis | Tiedemann, Daniel | Baskaran, Thisayini | Bocca, Cinzia | Vohra, Rupali | Cvenkel, Barbara | Lenaers, Guy | Kolko, Miriam

Edité par CCSD ; MDPI -

International audience. Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs). The main risk factor is elevated intraocular pressure (IOP), but the actual cause of the disease remains unknown. Emerging evidence indicates that metabolic dysfunction plays a central role. The aim of the current study was to determine and compare the effect of universal hypoxia on the metabolomic signature in plasma samples from healthy controls (n = 10), patients with normal-tension glaucoma (NTG, n = 10), and ocular hypertension (OHT, n = 10). By subjecting humans to universal hypoxia, we aim to mimic a state in which the mitochondria in the body are universally stressed. Participants were exposed to normobaric hypoxia for two hours, followed by a 30 min recovery period in normobaric normoxia. Blood samples were collected at baseline, during hypoxia, and in recovery. Plasma samples were analyzed using a non-targeted metabolomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Multivariate analyses were conducted using principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and univariate analysis using the Wilcoxon signed-rank test and false discovery rate (FDR) correction. Unique metabolites involved in fatty acid biosynthesis and ketone body metabolism were upregulated, while metabolites of the kynurenine pathway were downregulated in OHT patients exposed to universal hypoxia. Differential affection of metabolic pathways may explain why patients with OHT initially do not suffer or are more resilient from optic nerve degeneration. The metabolomes of NTG and OHT patients are regulated differently from control subjects and show dysregulation of metabolites important for energy production. These dysregulated processes may potentially contribute to the elevation of IOP and, ultimately, cell death of the RGCs.

Consulter en ligne

Suggestions

Du même auteur

Impact of glaucoma medications on the ocular surface and how ocular surface disease can influence glaucoma treatment

Archive ouverte | Kolko, Miriam | CCSD

International audience

Glycogenesis and glyconeogenesis from glutamine, lactate and glycerol support human macrophage functions

Archive ouverte | Jeroundi, Najia | CCSD

International audience. Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that t...

A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies

Archive ouverte | Bocca, Cinzia | CCSD

International audience. Leber’s hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in y...

Chargement des enrichissements...