The Detri 2 match conceptual framework: Matching detritivore and detritus traits to unravel consumption rules in a context of decomposition

Archive ouverte

Marchand, Théo | Lecerf, Antoine | Brousseau, Pierre-Marc | Chauvat, Matthieu | Danger, Michael | Forey, Estelle | Handa, Tanya | Hedde, Mickael | Maunoury-Danger, Florence | Santonja, Mathieu | Pey, Benjamin

Edité par CCSD ; Wiley -

International audience. From soil to freshwater ecosystems, decomposition can be conceived as the result of interactions between organic matter and a diversity of organisms. This function is driven in part by detritivores, invertebrates that feed on detritus or graze on its associated microbes and that have a significant but extremely variable contribution to decomposition.In order to better understand and predict detritivore–detritus pairwise interactions, we propose a conceptual framework, called Detri2match, to study the consumption of detritus by detritivores, using a trait-matching approach at the individual detritivore level. Here, we focus on the interaction between saprophagous detritivores that fragment plant detritus.We propose a novel definition of a saprophagous detritivore as an animal that consumes plant detritus when its traits match sufficiently the traits of its resource, passing through five interaction facets of consumption. These include (1) a spatial match rule regarding the encounter, (2) a biomechanical match rule regarding ingestion, (3) a digestive match rule regarding assimilation, (4) an energetic match rule regarding the fulfilment of metabolic needs and (5) a nutritional match rule regarding the fulfilment of chemical element needs in adapted proportions.The main goal of this framework is to guide future research to establish generic rules of misunderstood detritus–detritivore pairwise interactions by identifying relevant interaction facets and their key associated traits for both detritivores and detritus. This investigation should be conducted over the temporal variability of trait-matching constraints throughout the whole decomposition process. Coupled with adequate accumulation of trait information, the Detri2match framework could also facilitate predictions by inference of non-tested pairwise detritivore–litter interactions.We also outline conceptual, methodological and analytical challenges of this framework. The main challenge would be to scale up these pairwise rules at the detrital network level and to test their genericity, which would contribute to a better understanding of the functioning of the detrital network and its contribution to decomposition.

Suggestions

Du même auteur

Impact de la renouée sur la diversité fonctionnelle des macro-invertébrés du sol

Archive ouverte | Brousseau, Pierre-Marc | CCSD

National audience. La renouée du Japon (Reynoutria japonica) est une plante invasive ayant un fort impact négatif sur la diversité végétale et qui peut modifier les propriétés physico-chimiques du sol et le ratio ba...

Using plant litter decomposition as an indicator of ecosystem response to soil contamination

Archive ouverte | Lecerf, Antoine | CCSD

International audience. The inventory and remediation of contaminated sites have emerged as top environmental priorities worldwide. A large body of evidence has accumulated to show how soil contamination affects bio...

The brownfield of the Eiffel tower steel mill: a highly contaminated but well-functioning ecosystem

Archive ouverte | Lucisine, P. | CCSD

International audience

Chargement des enrichissements...