Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana

Archive ouverte

Mayer, K. | Schüller, C. | Wambutt, R. | Murphy, G. | Volckaert, G. | Pohl, T. | Düsterhöft, A. | Stiekema, W. | Entian, K.-D. | Terryn, N. | Harris, B. | Ansorge, W. | Brandt, P. | Grivell, L. | Rieger, M. | Weichselgartner, M. | de Simone, V. | Obermaier, B. | Mache, R. | Müller, M. | Kreis, M. | Delseny, M. | Puigdomenech, P. | Watson, M. | Schmidtheini, T. | Reichert, B. | Portatelle, D. | Perez-Alonso, M. | Boutry, M. | Bancroft, I. | Vos, P. | Hoheisel, J. | Zimmermann, W. | Wedler, H. | Ridley, P. | Langham, S.-A. | Mccullagh, B. | Bilham, L. | Robben, J. | van der Schueren, J. | Grymonprez, B. | Chuang, Y.-J. | Vandenbussche, F. | Braeken, M. | Weltjens, I. | Voet, M. | Bastiaens, I. | Aert, R. | Defoor, E. | Weitzenegger, T. | Bothe, G. | Ramsperger, U. | Hilbert, H. | Braun, M. | Holzer, E. | Brandt, A. | Peters, S. | van Staveren, M. | Dirkse, W. | Mooijman, P. | Lankhorst, R. Klein | Rose, M. | Hauf, J. | Kötter, P. | Berneiser, S. | Hempel, S. | Feldpausch, M. | Lamberth, S. | van den Daele, H. | de Keyser, A. | Buysshaert, C. | Gielen, J. | Villarroel, R. | de Clercq, R. | van Montagu, M. | Rogers, J. | Cronin, A. | Quail, M. | Bray-Allen, S. | Clark, L. | Doggett, J. | Hall, S. | Kay, M. | Lennard, N. | Mclay, K. | Mayes, R. | Pettett, A. | Rajandream, M.-A. | Lyne, M. | Benes, V. | Rechmann, S. | Borkova, D. | Blöcker, H. | Scharfe, M. | Grimm, M. | Löhnert, T.-H. | Dose, S. | de Haan, M. | Maarse, A. | Schäfer, M. | Müller-Auer, S. | Gabel, C. | Fuchs, M. | Fartmann, B. | Granderath, K. | Dauner, D. | Herzl, A. | Neumann, S. | Argiriou, A. | Vitale, D. | Liguori, R. | Piravandi, E. | Massenet, O. | Quigley, F. | Clabauld, G. | Mündlein, A. | Felber, R. | Schnabl, S. | Hiller, R. | Schmidt, W. | Lecharny, A. | Aubourg, Sébastien | Chefdor, F. | Cooke, R. | Berger, C. | Montfort, A. | Casacuberta, E. | Gibbons, T. | Weber, N. | Vandenbol, M. | Bargues, M. | Terol, J. | Torres, A. | Perez-Perez, A. | Purnelle, B. | Bent, E. | Johnson, S. | Tacon, D. | Jesse, T. | Heijnen, L. | Schwarz, S. | Scholler, P. | Heber, S. | Francs, P. | Bielke, C. | Frishman, D. | Haase, D. | Lemcke, K. | Mewes, H. | Stocker, S. | Zaccaria, P. | Bevan, M. | Wilson, R. | de la Bastide, M. | Habermann, K. | Parnell, L. | Dedhia, N. | Gnoj, L. | Schutz, K. | Huang, E. | Spiegel, L. | Sehkon, M. | Murray, J. | Sheet, P. | Cordes, M. | Abu-Threideh, J. | Stoneking, T. | Kalicki, J. | Graves, T. | Harmon, G. | Edwards, J. | Latreille, P. | Courtney, L. | Cloud, J. | Abbott, A. | Scott, K. | Johnson, D. | Minx, P. | Bentley, D. | Fulton, B. | Miller, N. | Greco, T. | Kemp, K. | Kramer, J. | Fulton, L. | Mardis, E. | Dante, M. | Pepin, K. | Hillier, L. | Nelson, J. | Spieth, J. | Ryan, E. | Andrews, S. | Geisel, C. | Layman, D. | Du, H. | Ali, J. | Berghoff, A. | Jones, K. | Drone, K. | Cotton, M. | Joshu, C. | Antonoiu, B. | Zidanic, M. | Strong, C. | Sun, H. | Lamar, B. | Yordan, C. | Ma, P. | Zhong, J. | Preston, R. | Vil, D. | Shekher, M. | Matero, A. | Shah, R. | Swaby, I'K. | O'Shaughnessy, A. | Rodriguez, M. | Hoffman, J. | Till, S. | Granat, S. | Shohdy, N. | Hasegawa, A. | Hameed, A. | Lodhi, M. | Johnson, A. | Chen, E. | Marra, M. | Martienssen, R. | Mccombie, W.

Edité par CCSD ; Nature Publishing Group -

International audience. The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

Consulter en ligne

Suggestions

Du même auteur

Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana

Archive ouverte | Bevan, M. | CCSD

International audience. The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the avai...

The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications

Archive ouverte | Philippsen, P. | CCSD

Letters to Nature. International audience. In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be lo...

The complete genome sequence of the gram-positive bacterium Bacillus subtilis

Archive ouverte | Kunst, F. | CCSD

49 ref. 5 graph.. International audience. Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-c...

Chargement des enrichissements...