Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum

Archive ouverte

Xu, Xuan | Legay, Sylvain | Sergeant, Kjell | Zorzan, Simone | Leclercq, Céline | Charton, Sophie | Giarola, Valentino | Liu, Xun | Challabathula, Dinakar | Renaut, Jenny | Hausman, Jean‐francois | Bartels, Dorothea | Guerriero, Gea

Edité par CCSD ; Wiley -

International audience. Summary The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long‐term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post‐transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C 3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP‐independent bypasses, alternative respiratory pathway and 4‐aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high‐resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.

Consulter en ligne

Suggestions

Du même auteur

MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins

Archive ouverte | Legay, Sylvain | CCSD

International audience. Summary A comparison of the transcriptomes of russeted vs nonrusseted apple skins previously highlighted a tight relationship between a gene encoding an MYB ‐type transcription factor, Md MYB...

Characterization of MdMYB68, a suberin master regulator in russeted apples

Archive ouverte | Xu, Xuan | CCSD

International audience. Introduction Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have...

Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria

Archive ouverte | Backes, Aurélie | CCSD

International audience. Net blotch, caused by the ascomycete Drechslera teres, can compromise barley production. Beneficial bacteria strains are of substantial interest as biological agents for plant protection in a...

Chargement des enrichissements...