A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat

Archive ouverte

Rustenholz, Camille | Choulet, Frédéric | Laugier, Christel | Šafář, Jan | Šimková, Hana | Doležel, Jaroslav | Magni, Federica | Scalabrin, Simone | Cattonaro, Federica | Vautrin, Sonia | Bellec, Arnaud | Bergès, Hélène | Feuillet, Catherine | Paux, Etienne

Edité par CCSD ; Oxford University Press ; American Society of Plant Biologists -

International audience. Abstract To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.

Consulter en ligne

Suggestions

Du même auteur

A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

Archive ouverte | Philippe, Romain | CCSD

International audience. Background: As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexit...

A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

Archive ouverte | Philippe, Romain | CCSD

Background: As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and...

Shifting the limits in wheat research and breeding using a fully annotated reference genome

Archive ouverte | Appels, Rudi | CCSD

International audience. Insights from the annotated wheat genome Wheat is one of the major sources of food for much of the world. However, because bread wheat's genome is a large hybrid mix of three separate subgeno...

Chargement des enrichissements...