Trophic amplification: A model intercomparison of climate driven changes in marine food webs

Archive ouverte

Guibourd de Luzinais, Vianney | Du Pontavice, Hubert | Reygondeau, Gabriel | Barrier, Nicolas | Blanchard, Julia, L | Bornarel, Virginie | Büchner, Matthias | Cheung, William, W L | Eddy, Tyler, D | Everett, Jason, D | Guiet, Jerome | Harrison, Cheryl, S | Maury, Olivier | Novaglio, Camilla | Petrik, Colleen, M | Steenbeek, Jeroen | Tittensor, Derek, P | Gascuel, Didier, D.

Edité par CCSD ; Public Library of Science -

International audience. Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090-2099 relative to 1995-2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world's oceans) in the model ensemble. In 40% of the world's oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world's oceans consumer biomass is expected to decrease even as projected NPP

Suggestions

Du même auteur

Marine heatwaves deeply alter marine food web structure and function

Archive ouverte | Guibourd de Luzinais, Vianney | CCSD

Marine heatwaves (MHWs) are becoming longer, more frequent and more intense in recent decades. MHWs have caused large-scale ecological impacts, such as coral bleaching, mass mortality of seagrass, fishes and invertebrates, and shi...

Large potential impacts of marine heatwaves on ecosystem functioning

Archive ouverte | de Luzinais, Vianney, Guibourd | CCSD

International audience. Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering t...

Global and regional marine ecosystem model climate change projections reveal key uncertainties

Archive ouverte | Eddy, Tyler, D | CCSD

Global marine ecosystem models projected greater biomass declines with climate change than regional marine ecosystem models for many region• For both global and regional models, greater biomass declines were projected in CMIP6 tha...

Chargement des enrichissements...