Development of nine microsatellite loci for Trypanosoma lewisi, a potential human pathogen in Western Africa and South-East Asia, and preliminary population genetics analyses

Archive ouverte

Ségard, Adeline | Romero, Audrey | Ravel, Sophie | Truc, Philippe | Dobigny, Gauthier | Gauthier, Philippe | Etougbétché, Jonas, R | Dossou, Henri-Joël | Badou, Sylvestre | Houéménou, Gualbert | Morand, Serge | Chaisiri, Kittipong | Noûs, Camille | de Meeûs, Thierry

Edité par CCSD ; Peer Community In -

Primer sequences and raw data are available in the supplementary file S1 at: https://doi.org/10.5281/zenodo.6460010. Samples and associated data were deposited in the Small Mammal Collection at the IRD/CBGP (https://doi.org/10.15454/WWNUPO) as well as at URIB/LARBA/EPAC and Kasetsart University (Thailand). They are available upon request.Preprint version 3 of this article has been peer-reviewed and recommended by Peer Community InInfections.. Trypanosoma lewisi belongs to the so-called atypical trypanosomes that occasionally affect humans. It shares the same hosts and flea vector of other medically relevant pathogenic agents as Yersinia pestis, the agent of plague. Increasing knowledge on the population structure (reproductive mode, population size, dispersal) of this parasite thus represents a challenging but important issue. The use of polymorphic genetic markers, together with suitable population genetics tools, is a convenient way to achieve such objectives. To date, the population biology of T. lewisi is poorly known and, to our knowledge, no population genetics studies have ever been conducted. Here, we present the development of nine microsatellite markers of this species. We investigated their polymorphism in different countries from Africa and South-East Asia from DNAs extracted from the spleen of their rodent reservoirs (essentially rat species). Several amplification problems arose, especially with South-East Asian individuals. This led to retain only those individuals with complete genotypes (most of them originating from West Africa, notably Cotonou, Benin) to ensure an optimal estimate of heterozygosity. Our results pointed towards a mainly (at least 95-99%) clonal mode of propagation, a strong subdivision at the smallest scale available (i.e., urban neighborhoods, i.e. 0.250 km²), and a generation time most probably shorter than 4 months. In future studies, more extensive sampling at smaller geographic scales (i.e., households), within a one- or two-months window and with improved amplification conditions, should lead to a more precise picture of the fine population structure of this parasite.

Suggestions

Du même auteur

Spatio-temporal survey of small mammal-borne Trypanosoma lewisi in Cotonou, Benin, and the potential risk of human infection

Archive ouverte | Dobigny, Gauthier | CCSD

International audience. Highlights: • A Trypanosoma survey was conducted in 369 small mammals from districts of Cotonou, Benin, during three successive seasons. • Sequencing data allowed us to unambiguously i...

Analyse de la variabilité spatio-temporelle des eaux stagnantes dans la ville de Cotonou

Archive ouverte | Dossou, Henri-Joël | CCSD

International audience

Genetic Characterization of Seoul Virus in the Seaport of Cotonou, Benin

Archive ouverte | Castel, Guillaume | CCSD

Field and laboratory work was conducted under the research agreement between the Republic of Benin and the French Institute of Research for Sustainable Development (September 30, 2010) and the Scientific and Technical Cooperation ...

Chargement des enrichissements...