Genomic footprints of selection in early-and late-flowering pearl millet landraces

Archive ouverte

Faye, Adama | Barnaud, Adeline | Kane, Ndjido Ardo | Cubry, Philippe | Mariac, Cédric | Burgarella, Concetta | Rhoné, Bénédicte | Faye, Aliou | Olodo, Katina Floride | Cisse, Aby | Couderc, Marie | Dequincey, Anaïs | Zekraouï, Leïla | Moussa, Djibo | Tidjani, Moussa | Vigouroux, Yves | Berthouly-Salazar, Cécile

Edité par CCSD ; Frontiers -

International audience. Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming. Flowering time, a trait highly correlated with latitude, is one of the key traits that could be modulated to face future global changes. West African pearl millet landraces, can be grouped into early- (EF) and late-flowering (LF) varieties, each flowering group playing a specific role in the functioning and resilience of Sahelian smallholders. The aim of this study was thus to detect genes linked to flowering but also linked to relevant traits within each flowering group. We thus investigated genomic and phenotypic diversity in 109 pearl millet landrace accessions, i.e., 66 early-flowering and 43 late-flowering, grown in the groundnut basin, the first area of rainfed agriculture in Senegal dominated by dry cereals (millet, maize, and sorghum) and legumes (groundnuts, cowpeas). We were able to confirm the role of PhyC gene in pearl millet flowering and identify several other genes that appear to be as much as important, such as FSR12 and HAC1 . HAC1 and two other genes appear to be part of QTLs previously identified and deserve further investigation. At the same time, we were able to highlight a several genes and variants that could contribute to the improvement of pearl millet yield, especially since their impact was demonstrated across flowering cycles.

Suggestions

Du même auteur

Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration

Archive ouverte | Rhoné, Bénédicte | CCSD

Data availability: The raw sequencing data are deposited in the NCBI Sequence Read Archive (SRA) database with the BioProject accession number PRJNA422966. The allele frequency data, the raw phenotypic data, and the climate datase...

A western Sahara centre of domestication inferred from pearl millet genomes. Un centre de domestication au Sahara occidental pour le millet perlé déduit des génomes

Archive ouverte | Burgarella, Concetta | CCSD

International audience. There have been intense debates over the geographic origin of African crops and agriculture. Here, we used whole-genome sequencing data to infer the domestication origin of pearl millet (Cenc...

An improved assembly of the pearl millet reference genome using Oxford Nanopore long reads and optical mapping

Archive ouverte | Salson, Marine | CCSD

International audience. Pearl millet (Pennisetum glaucum (L.)) R. Br. syn. Cenchrus americanus (L.) Morrone) is an important crop in South Asia and sub-Saharan Africa which contributes to ensuring food security. Its...

Chargement des enrichissements...