Altered Mitochondrial Opa1-Related Fusion in Mouse Promotes Endothelial Cell Dysfunction and Atherosclerosis

Archive ouverte

Chehaitly, Ahmad | Guihot, Anne-Laure | Proux, Coralyne | Grimaud, Linda | Aurrière, Jade | Legouriellec, Benoit | Rivron, Jordan | Vessieres, Emilie | Tétaud, Clément | Zorzano, Antonio | Procaccio, Vincent | Joubaud, Françoise | Reynier, Pascal | Lenaers, Guy | Loufrani, Laurent | Henrion, Daniel

Edité par CCSD ; MDPI -

International audience. Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells’ (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/− mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr−/--Opa1+/- and in Ldlr−/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development.

Suggestions

Du même auteur

Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner

Archive ouverte | Favre, Julie | CCSD

International audience. Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency ...

Nuclear Activation Function 2 Estrogen Receptor α Attenuates Arterial and Renal Alterations Due to Aging and Hypertension in Female Mice

Archive ouverte | Guivarc'H, Emmanuel | CCSD

International audience. BackgroundThe cardiovascular protective effects of estrogens in premenopausal women depend mainly on estrogen receptor α (ERα). ERα activates nuclear gene transcription regulation and membran...

Estrogens and the Angiotensin II Type 2 Receptor Control Flow-Mediated Outward Remodeling in the Female Mouse Mesenteric Artery

Archive ouverte | Vessieres, Emilie | CCSD

International audience

Chargement des enrichissements...