Structurally related (−)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study

Archive ouverte

Corral-Jara, Karla Fabiola | Nuthikattu, Saivageethi | Rutledge, John | Villablanca, Amparo | Fong, Reedmond | Heiss, Christian | Ottaviani, Javier | Milenkovic, Dragan

Edité par CCSD ; Elsevier -

International audience. Dysfunction of blood-brain barrier formed by endothelial cells of cerebral blood vessels, plays a key role in development of neurodegenerative disorders. Epicatechin exerts vasculo-protective effects through genomic modifications, however molecular mechanisms of action, particularly on brain endothelial cells, are largely unknow. This study aimed to use a multi-omic approach (transcriptomics of mRNA, miRNAs and lncRNAs, and proteomics), to provide novel in-depth insights into molecular mechanisms of how metabolites affect brain endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological concentrations. We showed that metabolites can simultaneously modulate expression of protein-coding, non-coding genes and proteins. Integrative analysis revealed interactions between different types of RNAs and form functional groups of genes involved in regulation of processing like VEGF-related functions, cell signaling, cell adhesion and permeability. Molecular modeling of genomics data predicted that metabolites decrease endothelial cell permeability, increased by lipotoxic stress. Correlation analysis between genomic modifications observed and genomic signature of patients with vascular dementia and Alzheimer's diseases showed opposite gene expression changes. Taken together, this study describes for the first time a multi-omic mechanism of action by which (-)-epicatechin metabolites could preserve brain vascular endothelial cell integrity and reduce the risk of neurodegenerative diseases. Significance: Dysfunction of the blood-brain barrier (BBB), characterized by dysfunction of endothelial cells of cerebral blood vessels, result in an increase in permeability and neuroinflammation which constitute a key factor in the development neurodegenerative disorders. Even though it is suggested that polyphenols can prevent or delay the development of these disorders, their impact on brain endothelial cells and underlying mechanisms of actions are unknow. This study aimed to use a multi-omic approach including analysis of expression of mRNA, microRNA, long non-coding RNAs, and proteins to provide novel global in-depth insights into molecular mechanisms of how (-)-epicatechin metabolites affect brain microvascular endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological relevant conditions. The results provide basis of knowledge on the capacity of polyphenols to prevent brain endothelial dysfunction and consequently neurodegenerative disorders.

Consulter en ligne

Suggestions

Du même auteur

Integrated Multi-Omic Analyses of the Genomic Modifications by Gut Microbiome-Derived Metabolites of Epicatechin, 5-(4′-Hydroxyphenyl)-γ-Valerolactone, in TNFalpha-Stimulated Primary Human Brain Microvascular Endothelial Cells

Archive ouverte | Corral-Jara, Karla Fabiola | CCSD

International audience. Cerebral blood vessels are lined with endothelial cells and form the blood-brain barrier. Their dysfunction constitutes a crucial event in the physiopathology of neurodegenerative disorders a...

Grapefruit Juice Flavanones Modulate the Expression of Genes Regulating Inflammation, Cell Interactions and Vascular Function in Peripheral Blood Mononuclear Cells of Postmenopausal Women

Archive ouverte | Krga, Irena | CCSD

International audience. Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal ...

An integrative metatranscriptomic analysis reveals differences in enteric methanogenesis mechanisms between cows and goats

Archive ouverte | Corral-Jara, Karla Fabiola | CCSD

Abstract Background: Reducing enteric methane emissions from farmed ruminants can be achieved by various nutritional strategies. However, it remains unclear to what extent the effects of diet on rumen microbiome are comparable bet...

Chargement des enrichissements...