Granulocyte microvesicles with a high plasmin generation capacity promote clot lysis and improve outcome in septic shock

Archive ouverte

Cointe, Sylvie | Vallier, Loris | Esnault, Pierre | Dacos, Mathilde | Bonifay, Amandine | Macagno, Nicolas | Harti Souab, Karim | Chareyre, Corinne | Judicone, Coralie | Frankel, Diane | Robert, Stéphane | Hraiech, Sami | Alessi, Marie-Christine | Poncelet, Philippe | Albanese, Jacques | Dignat-George, Françoise | Lacroix, Romaric

Edité par CCSD ; American Society of Hematology -

International audience. Abstract Microvesicles (MVs) have previously been shown to exert profibrinolytic capacity, which is increased in patients with septic shock (SS) with a favorable outcome. We, therefore, hypothesized that the plasmin generation capacity (PGC) could confer to MVs a protective effect supported by their capacity to lyse a thrombus, and we investigated the mechanisms involved. Using an MV-PGC kinetic assay, ELISA, and flow cytometry, we found that granulocyte MVs (Gran-MVs) from SS patients display a heterogeneous PGC profile driven by the uPA (urokinase)/uPAR system. In vitro, these MVs lyse a thrombus according to their MV-PGC levels in a uPA/uPAR-dependent manner, as shown in a fluorescent clot lysis test and a lysis front retraction assay. Fibrinolytic activators conveyed by MVs contribute to approximately 30% of the plasma plasminogenolytic capacity of SS patients. In a murine model of SS, the injection of high PGC Gran-MVs significantly improved mouse survival and reduced the number of thrombi in vital organs. This was associated with a modification of the mouse coagulation and fibrinolysis properties toward a more fibrinolytic profile. Interestingly, mouse survival was not improved when soluble uPA was injected. Finally, using a multiplex array on plasma from SS patients, we found that neutrophil elastase correlates with the effect of high-PGC-capacity plasma and modulates the Gran-MV plasmin generation capacity by cleaving uPA-PAI-1 complexes. In conclusion, we show that the high PGC level displayed by Gran-MVs reduces thrombus formation and improves survival, conferring to Gran-MVs a protective role in a murine model of sepsis. . Microvesicles (MVs) have previously been shown to exert profibrinolytic capacity, which is increased in patients with septic shock (SS) with a favorable outcome. We, therefore, hypothesized that the plasmin generation capacity (PGC) could confer to MVs a protective effect supported by their capacity to lyse a thrombus, and we investigated the mechanisms involved. Using an MV-PGC kinetic assay, ELISA, and flow cytometry, we found that granulocyte MVs (Gran-MVs) from SS patients display a heterogeneous PGC profile driven by the uPA (urokinase)/uPAR system. In vitro, these MVs lyse a thrombus according to their MV-PGC levels in a uPA/uPAR-dependent manner, as shown in a fluorescent clot lysis test and a lysis front retraction assay. Fibrinolytic activators conveyed by MVs contribute to approximately 30% of the plasma plasminogenolytic capacity of SS patients. In a murine model of SS, the injection of high PGC Gran-MVs significantly improved mouse survival and reduced the number of thrombi in vital organs. This was associated with a modification of the mouse coagulation and fibrinolysis properties toward a more fibrinolytic profile. Interestingly, mouse survival was not improved when soluble uPA was injected. Finally, using a multiplex array on plasma from SS patients, we found that neutrophil elastase correlates with the effect of high-PGC-capacity plasma and modulates the Gran-MV plasmin generation capacity by cleaving uPA-PAI-1 complexes. In conclusion, we show that the high PGC level displayed by Gran-MVs reduces thrombus formation and improves survival, conferring to Gran-MVs a protective role in a murine model of sepsis.

Suggestions

Du même auteur

A new assay to evaluate microvesicle plasmin generation capacity: validation in disease with fibrinolysis imbalance

Archive ouverte | Cointe, Sylvie | CCSD

International audience. Among extracellular vesicles, leukocyte-derived microvesicles (LMVs) have emerged as complex vesicular structures. Primarily identified as procoagulant entities, they were more recently ascri...

A new strategy to count and sort neutrophil‐derived extracellular vesicles: Validation in infectious disorders

Archive ouverte | Bonifay, Amandine | CCSD

International audience. Abstract Newly recognized polymorphonuclear neutrophil (PMNs) functions include the ability to release subcellular mediators such as neutrophil‐derived extracellular vesicles (NDEVs) involved...

Increasing the sensitivity of the human microvesicle tissue factor activity assay

Archive ouverte | Vallier, Loris | CCSD

International audience. Introduction: The TF-FVIIa complex is the primary activator of coagulation. Elevated levels of microvesicle (MV) bearing tissue factor (TF)-dependent procoagulant activity are detectable in p...

Chargement des enrichissements...