Copper induces protein aggregation, a toxic process compensated by molecular chaperones

Archive ouverte

Zuily, Lisa | Lahrach, Nora | Fassler, Rosi | Geneste, Olivier | Faller, Peter | Sénèque, Olivier | Denis, Yann | Castanie-Cornet, Marie-Pierre | Genevaux, Pierre | Jakob, Ursula | Reichmann, Dana | Giudici-Orticoni, Marie Thérèse | Ilbert, Marianne

Edité par CCSD ; American Society for Microbiology -

International audience. Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu$^+$ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu$^+$-treated samples, suggesting that nonspecific interactions of Cu$^+$ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive.

Suggestions

Du même auteur

The Central Role of Redox-Regulated Switch Proteins in Bacteria

Archive ouverte | Fassler, Rosi | CCSD

International audience. Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, d...

Ligands as a Tool to Tune the Toxicity of Cu on Bacteria: from Boosting to Silencing

Archive ouverte | Zuily, Lisa | CCSD

International audience. Copper is an essential micronutrient for most living beings includingbacteria. This is mainly due to essential roles of catalytic Cu-centersin enzymes. However, an excess of Cu is toxic and t...

Emerging fields in chaperone proteins: A French workshop

Archive ouverte | Mileo, Elisabetta | CCSD

International audience. The "Bioenergetique et Ingenierie des Proteines (BIP)" laboratory, CNRS (France), organized its first French workshop on molecular chaperone proteins and protein folding in November 2017. The...

Chargement des enrichissements...