Confocal Microscopy Improves 3D Microdosimetry Applied to Nanoporation Experiments Targeting Endoplasmic Reticulum

Archive ouverte

de Angelis, Annalisa | Denzi, Agnese | Merla, Caterina | André, Franck, M. | Mir, Lluis, M. | Apollonio, Francesca | Liberti, Micaela

Edité par CCSD ; Frontiers -

International audience. In the last years, microdosimetric numerical models of cells including intracellular compartments have been proposed, aiming to investigate the poration induced by the application of nanosecond pulsed electric fields (nsPEFs). A limitation of such models was the extremely approximate cell and organelle shapes, leading to an incorrect estimation of the electric field or transmembrane potential distribution in the studied domain. In order to obtain a reliable model of in vitro experiments and a one-to-one comparison between experimental and simulated results, here, a realistic model of 12 human mesenchymal stem cells was built starting from their optical microscopy images where different cell compartments were highlighted. The microdosimetric analysis of the cells group was quantified in terms of electric field and transmembrane potentials (TMPs) induced by an externally applied 10-ns trapezoidal pulse with rise and fall times of 2 ns, with amplitudes ranging from 2 to 30 MV/m. The obtained results showed that the plasma and endoplasmic reticulum (ER) membrane of each cell respond in a different way to the same electric field amplitude, depending on differences in shape, size, and position of the single cell with respect to the applied electric field direction. Therefore, also the threshold for an efficient electroporation is highly different from cell to cell. This difference was quantitatively estimated through the cumulative distribution function of the pore density for the plasma and ER membrane of each cell, representing the probability that a certain percentage of membrane has reached a specific value of pore density. By comparing the dose-response curves resulted from the simulations and those from the experimental study of De Menorval et al. (2016), we found a very good matching of results for plasma and ER membrane when 2% of the porated area is considered sufficient for permeabilizing the membrane. This result is worth of noting as it highlights the possibility to effectively predict the behavior of a cell (or of a population of cells) exposed to nsPEFs. Therefore, the microdosimetric realistic model described here could represent a valid tool in setting up more efficient and controlled electroporation protocols.

Suggestions

Du même auteur

A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells

Archive ouverte | Merla, Caterina | CCSD

International audience

Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects

Archive ouverte | Cifra, Michal | CCSD

International audience. Mechanisms of how electromagnetic (EM) field acts on biological systems are governed by thesame physics regardless of the origin of the EM field (technological, atmospheric, ...), given thatE...

Glossary on atmospheric electricity and its effects on biology

Archive ouverte | Fdez-Arroyabe, Pablo | CCSD

International audience. There is an incipient evidence of the interest of studying the interactions between atmospheric electric fields and livingorganisms at multiple scales. Few studies based focused on natural at...

Chargement des enrichissements...