Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19

Archive ouverte

Demaria, Olivier | Carvelli, Julien | Batista, Luciana | Thibult, Marie-Laure | Morel, Ariane | André, Pascale | Morel, Yannis | Vély, Frederic | Vivier, Eric

Edité par CCSD ; Nature Publishing Group/Chinese Society of Immunology -

International audience. Infection with SARS-COV-2 is the cause of COVID-19 and has generated an unprecedented health crisis worldwide. While most of the patients experience mild symptoms, around 20% develop severe disease, characterized by pneumonia and in the worst cases by acute respiratory distress syndrome (ARDS).1 The analysis and understanding of the immune responses arising in the course of SARS-COV-2 infection may help to propose therapeutic solutions. Due to the crucial role of Natural Killer (NK) cells in antiviral immune responses,2 we analyzed NK cells in blood from a cohort of 82 individuals: 10 healthy controls (HC), 10 paucisymptomatic COVID-19 patients (pauci), 34 patients with pneumonia (pneumo) and 28 patients with ARDS due to SARS-CoV-2 infection. The absolute numbers of peripheral blood NK cells, B, CD4+, and CD8+ T lymphocytes were lower in the pneumonia and ARDS groups than in healthy controls, consistent with previously published results3 (Fig. 1a). We investigated the NK cell subsets further and found that among CD45+CD3−CD56+ total NK cells the proportion of mature NK cells, a subset defined on the basis of its expression of the CD16 and CD57 cell surface receptors, was markedly lower in patients with ARDS (Fig. 1b). Given their role in viral infection, the loss of mature NK cells may contribute to the pulmonary complications occurring in the most severe cases of COVID-19. We then focused our analysis on molecular pathways likely to improve NK cell antiviral activity to promote SARS-CoV-2 clearance, and analyzed the expression of several immune checkpoints. Given the availability of therapeutic monoclonal antibodies blocking the immunosuppressive functions of PD-1,4 NKG2A,5 and CD396 initially developed for cancer therapies, we analyzed the expression of these molecules on NK cells in our cohort. PD-1 and NKG2A are cell surface receptors, and their engagement with their ligands, PD-L1 and HLA-E, respectively, inhibits the function of T and NK cells. CD39 is an ectoenzyme that cleaves extracellular ATP and ADP, which can be released from dead cells upon viral infection, leading to the generation of adenosine, which has strong immunosuppressive effects on T and NK cells.

Suggestions

Du même auteur

Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis

Archive ouverte | Carvelli, Julien | CCSD

International audience. Coronavirus disease 2019 (COVID-19) is a disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic1. The C5a complement fact...

Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant

Archive ouverte | Demaria, Olivier | CCSD

International audience. Harnessing innate immunity is emerging as a promising therapeutic approach in cancer. We report here the design of tetraspecific molecules engaging natural killer (NK) cell-activating recepto...

Avdoralimab (Anti-C5aR1 mAb) Versus Placebo in Patients With Severe COVID-19: Results From a Randomized Controlled Trial (FOR COVID Elimination [FORCE])*

Archive ouverte | Carvelli, Julien | CCSD

International audience. OBJECTIVES: Severe COVID-19 is associated with exaggerated complement activation. We assessed the efficacy and safety of avdoralimab (an anti-C5aR1 mAb) in severe COVID-19. DESIGN: FOR COVID ...

Chargement des enrichissements...