Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery

Archive ouverte

Vaudry, David | Falluel-Morel, Anthony | Bourgault, Steve | Basille, Magali | Burel, Delphine | Wurtz, Olivier | Fournier, Alain | Chow, Billy, K C | Hashimoto, Hitoshi | Galas, Ludovic | Vaudry, Hubert

Edité par CCSD ; American Society for Pharmacology and Experimental Therapeutics -

International audience. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.

Consulter en ligne

Suggestions

Du même auteur

Effets du PACAP et du C2-céramide sur la motilité des neurones en grain du cervelet : rien ne sert de courir, il faut partir à point

Archive ouverte | Falluel-Morel, Anthony | CCSD

Ontogeny of PACAP receptors in the human cerebellum: perspectives of therapeutic applications.

Archive ouverte | Basille, Magali | CCSD

International audience. It is now well established that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts anti-apoptotic and pro-differentiating actions during development of the rodent cerebellum. C...

Pituitary adenylate cyclase-activating polypeptide inhibits caspase-3 activity but does not protect cerebellar granule neurons against beta-amyloid (25-35)-induced apoptosis.

Archive ouverte | Vaudry, David | CCSD

International audience. The beta-amyloid (Abeta) peptide Abeta25-35 provokes apoptosis of cerebellar granule cells through activation of caspase-3 while the neuropeptide pituitary adenylate cyclase-activating polype...

Chargement des enrichissements...