Automatic Segmentation of Kidney and Renal Tumor in CT Images Based on 3D Fully Convolutional Neural Network with Pyramid Pooling Module

Archive ouverte

Yang, Guanyu | Li, Guoqing | Pan, Tan | Kong, Youyong | Wu, Jiasong | Shu, Huazhong | Luo, Limin | Dillenseger, Jean-Louis | Coatrieux, Jean-Louis | Tang, Lijun | Zhu, Xiaomei

Edité par CCSD ; Institute of Electrical and Electronics Engineers Inc. -

International audience. Renal cancer is one of ten most common cancers in human beings. The laparoscopic partial nephrectomy (LPN) becomes the main therapeutic approach in treating renal cancer. Accurate kidney and tumor segmentation in CT images is a prerequisite step in the surgery planning. However, automatic and accurate kidney and renal tumor segmentation in CT images remains a challenge. In this paper, we propose a new method to perform a precise segmentation of kidney and renal tumor in CT angiography images. This method relies on a three-dimensional (3D) fully convolutional network (FCN) which combines a pyramid pooling module (PPM). The proposed network is implemented as an end-to-end learning system directly on 3D volumetric images. It can make use of the 3D spatial contextual information to improve the segmentation of the kidney as well as the tumor lesion. The experiments conducted on 140 patients show that these target structures can be segmented with a high accuracy. The resulting average dice coefficients obtained for kidney and renal tumor are equal to 0.931 and 0.802 respectively. These values are higher than those obtained from the other two neural networks. © 2018 IEEE.

Suggestions

Du même auteur

A Multi-Task Convolutional Neural Network for Renal Tumor Segmentation and Classification Using Multi-Phasic CT Images

Archive ouverte | Pan, Tan | CCSD

International audience. Accounting for nearly 2% of all adults, renal cell carcinomas are sensitive to laparoscopic partial nephrectomy (LPN) which needs an accurate diagnosis and localization before operation. Face...

Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning for fine renal artery segmentation

Archive ouverte | He, Yuting | CCSD

International audience. Fine renal artery segmentation on abdominal CT angiography (CTA) image is one of the most important tasks for kidney disease diagnosis and pre-operative planning. It will help clinicians loca...

DPA-DenseBiasNet: Semi-supervised 3D Fine Renal Artery Segmentation with Dense Biased Network and Deep Priori Anatomy

Archive ouverte | He, Yuting | CCSD

International audience. 3D fine renal artery segmentation on abdominal CTA image targets on the segmentation of the complete renal artery tree which will help clinicians locate the interlobar artery's corresponding ...

Chargement des enrichissements...