Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata

Archive ouverte

Benchouaia, Médine | Ripoche, Hugues | Sissoko, Mariam | Thiebaut, Antonin | Merhej, Jawad | Delaveau, Thierry | Fasseu, Laure | Benaissa, Sabrina | Lorieux, Geneviève | Jourdren, Laurent | Le Crom, Stéphane | Lelandais, Gaëlle | Corel, Eduardo | Devaux, Frédéric

Edité par CCSD ; Frontiers Media -

International audience. In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.

Suggestions

Du même auteur

A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

Archive ouverte | Merhej, Jawad | CCSD

International audience. The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of ...

Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen Candida glabrata

Archive ouverte | Delaveau, Thierry | CCSD

International audience. The CCAAT-binding complex (CBC) is a conserved heterotrimeric transcription factor which, in fungi, requires additional regulatory subunits to act on transcription. In the pathogenic yeast Ca...

The CCAAT-Binding Complex Controls Respiratory Gene Expression and Iron Homeostasis in Candida Glabrata

Archive ouverte | Thiébaut, Antonin | CCSD

International audience. The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is widely conserved in eukaryotes. In the model yeast S. cerevisiae, CBC positively controls the expression of r...

Chargement des enrichissements...