IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients

Archive ouverte

Mignot, Cyril | Mcmahon, Aoife | Bar, Claire | Campeau, Philippe | Davidson, David | Buratti, Julien | Nava, Caroline | Jacquemont, Marie-Line | Tallot, Marilyn | Milh, Mathieu | Edery, Patrick | Marzin, Pauline | Barcia, Giulia | Barnerias, Christine | Besmond, Claude | Bienvenu, Thierry | Bruel, Ange-Line | Brunga, Ledia | Ceulemans, Berten | Coubes, Christine | Cristancho, Ana | Cunningham, Fiona | Dehouck, Marie-Bertille | Donner, Elizabeth | Duban-Bedu, Bénédicte | Dubourg, Christèle | Gardella, Elena | Gauthier, Julie | Genevieve, David | Gobin-Limballe, Stéphanie | Goldberg, Ethan | Hagebeuk, Eveline | Hamdan, Fadi | Hančárová, Miroslava | Hubert, Laurence | Ioos, Christine | Ichikawa, Shoji | Janssens, Sandra | Journel, Hubert | Kaminska, Anna | Keren, Boris | Koopmans, Marije | Lacoste, Caroline | Laššuthová, Petra | Lederer, Damien | Lehalle, Daphne | Marjanovic, Dragan | Metreau, Julia | Michaud, Jacques | Miller, Kathryn | Minassian, Berge | Morales, Joannella | Moutard, Marie-Laure | Munnich, Arnold | Ortiz-Gonzalez, Xilma | Pinard, Jean-Marc | Prchalová, Darina | Putoux, Audrey | Quélin, Chloé | Rosen, Alyssa | Roume, Joëlle | Rossignol, Elsa | Simon, Marleen | Smol, Thomas | Shur, Natasha | Shelihan, Ivan | Štěrbová, Katalin | Vyhnálková, Emílie | Vilain, Catheline | Soblet, Julie | Smits, Guillaume | Yang, Samuel | van Der Smagt, Jasper | van Hasselt, Peter | van Kempen, Marjan | Weckhuysen, Sarah | Helbig, Ingo | Villard, Laurent | Héron, Delphine | Koeleman, Bobby | Møller, Rikke | Lesca, Gaetan | Helbig, Katherine, L. | Nabbout, Rima | Verbeek, Nienke, E. | Depienne, Christel

Edité par CCSD ; Nature Publishing Group -

International audience. Purpose: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.Methods: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms.Results: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments.Conclusion: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.

Suggestions

Du même auteur

Correction: IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients

Archive ouverte | Mignot, Cyril | CCSD

International audience. This Article was originally published under Nature Research's License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been...

PFMG2025–integrating genomic medicine into the national healthcare system in France

Archive ouverte | Abadie, Caroline | CCSD

International audience. Integrating genomic medicine into healthcare systems is a health policy challenge that requires continuously transferring scientific advances into clinics and ensuring equal access for patien...

Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

Archive ouverte | Wolff, Markus | CCSD

International audience. Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotype...

Chargement des enrichissements...