Genomic Characterization and Chromosomal Mapping of 5 River Buffalo Skeletal Muscle Differentiation Master Genes

Archive ouverte

Strazzullo, M. | Rossetti, C. | Fusco, G. | Campanile, C. | Vecchio, D. | Campanile, G. | Perucatti, A. | Di Meo, G.P. | Filippini, F. | Eggen, Andre | Ferrara, L. | D’esposito, M.

Edité par CCSD ; Karger -

Chantier qualité GA. River buffalo (Bubalus bubalis, 2n = 50, BBU) is a species of economic relevance in a number of countries. This species shows a very peculiar biology and a great capacity for environmental adaptation. There has been an increasing economic interest as well as a growing demand for a more detailed knowledge of molecular features in this species. From this perspective we report a genomic, transcriptional and cytogenetic analysis of 5 master genes involved in skeletal muscle development. Of these 5 genes, MYOD1, MYF5, MYF6 and MYOG belong to the basic helix-loop helix protein family while MSTN belongs to the TNF-B protein family. In mammals, these genes are involved in the early stages of skeletal muscle differentiation, development and regeneration. These pivotal biological functions are finely regulated in a tissue- and temporal-specific manner. We used a comparative genomic approach to obtain the buffalo specific sequences of MYOD1 and MYF6. The nucleotide sequence similarity and the protein domain conservation of the newly obtained sequences are analysed with respect to bovine and other mammalian species showing sequence similarity. The presence of a polymorphism in MYOD1 coding sequence is described and its possible effect discussed. Using a quantitative PCR approach, we compared the level of the 5 transcripts in adult and fetal muscle. These genes were physically localised on river buffalo R-banded chromosomes by FISH using bovine genomic BAC-clones. Here, we present a genomic and cytogenetic analysis which could offer a background to better characterise the buffalo genes involved in muscle function and which may be responsible for buffalo-specific meat features.

Consulter en ligne

Suggestions

Du même auteur

Thirteen type I loci from HSA4q, HSA6p, HSA7q and HSA12q were comparatively FISH-mapped in four river buffalo and sheep chromosomes

Archive ouverte | Di Meo, G.P. | CCSD

International audience

Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos Taurus)

Archive ouverte | Hamilton, C.K. | CCSD

Multi-copied gene families are prevalent in mammalian genomes, especially within the Y chromosome. Testis specific protein Y-encoded (TSPY) is present in variable copy number in many mammalian species. Previous studies have estima...

Sisteen type I loci from six human chromosomes were comparatively fluorescence in-situ mapped to river buffalo (Bubalus bubalis) and sheep (Ovis aries) chromosomes

Archive ouverte | Iannuzzi, L. | CCSD

International audience

Chargement des enrichissements...