Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition.

Archive ouverte

Connell, Bridgette Janine | Lortat-Jacob, Hugues

Edité par CCSD ; Frontiers -

International audience. By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.

Suggestions

Du même auteur

Development of a binding assay between the HIV-1 envelope protein (gp120) and coreceptors CCR5/CXCR4 by Surface Plasmon Resonance : Screening and optimization of viral entry inhibitors. Développement d'un test d'interaction entre la protéine d'enveloppe du VIH-1 (gp120) et les corécepteurs CCR5/CXCR4 par résonance plasmonique de surface : criblage et optimisation d'inhibiteurs de l'entrée virale

Archive ouverte | Connell, Bridgette Janine | CCSD

It is well-established that cell-associated Heparan Sulphate (HS) binds the V3 loop of gp120 of HIV-1 thus aiding in viral infectivity. However, a variety of soluble polyanions have antiviral properties once conjugated to CD4 and ...

Anti-HIV and immune modulating activities of IND02

Archive ouverte | Biedma, Marina Elizabeth | CCSD

International audience

A Synthetic Heparan Sulfate-Mimetic Peptide Conjugated to a Mini CD4 Displays Very High Anti- HIV-1 Activity Independently of Coreceptor Usage.

Archive ouverte | Connell, Bridgette Janine | CCSD

International audience. The HIV-1 envelope gp120, which features both the virus receptor (CD4) and coreceptor (CCR5/CXCR4) binding sites, offers multiple sites for therapeutic intervention. However, the latter becom...

Chargement des enrichissements...