Single cell in situ analysis in a B. subtilis swarming community identifies threees subpopulations differentially expressing hag (flagellin), including specialized swarmers

Archive ouverte

Hamze, Kassem | Autret, Sabine | Hinc, Krzysztof | Julkowska, Daria | Laalami, S. | Briandet, Romain | Renault, M. | Absalon, Cédric | Holland, I Barry | Putzer, Harald | J Séror, Simone

Edité par CCSD ; Microbiology Society -

International audience. The non-domesticated Bacillus subtilis strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 sfp+ (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in swrA, which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while swrA is essential for dendritic migration at low humidity (30-40 %), it is dispensable at high humidity. Dendritic migration (flagella- and surfactin-dependent) of strains 168 sfp+ swrA and 3610 involves elongation of dendrites for several hours as a monolayer of cells in a thin fluid film. This enabled us to determine in situ the spatiotemporal pattern of expression of some key players in migration as dendrites develop, using gfp transcriptional fusions for hag (encoding flagellin), comA (regulation of surfactin synthesis) as well as eps (exopolysaccharide synthesis). Quantitative (single-cell) analysis of hag expression in situ revealed three spatially separated subpopulations or cell types: (i) networks of chains arising early in the mother colony (MC), expressing eps but not hag; (ii) largely immobile cells in dendrite stems expressing intermediate levels of hag; and (iii) a subpopulation of cells with several distinctive features, including very low comA expression but hyper-expression of hag (and flagella). These specialized cells emerge from the MC to spearhead the terminal 1 mm of dendrite tips as swirling and streaming packs, a major characteristic of swarming migration. We discuss a model for this swarming process, emphasizing the importance of population density and of the complementary roles of packs of swarmers driving dendrite extension, while non-mobile cells in the stems extend dendrites by multiplication.

Consulter en ligne

Suggestions

Du même auteur

Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC.

Archive ouverte | Hamze, Kassem | CCSD

International audience. Highly branched dendritic swarming of B. subtilis on synthetic B-medium involves a developmental-like process that is absolutely dependent on flagella and surfactin secretion. In order to ide...

CpgA, EF-Tu and the stressosome protein YezB are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/PrpC, in Bacillus subtilis.

Archive ouverte | Absalon, Cédric | CCSD

International audience. The conserved prpC, prkC, cpgA locus in Bacillus subtilis encodes respectively a Ser/Thr phosphatase, the cognate sensor kinase (containing an external PASTA domain suggested to bind peptidog...

The GTPase CpgA is implicated in the deposition of the peptidoglycan sacculus in Bacillus subtilis.

Archive ouverte | Absalon, Cédric | CCSD

International audience. Depletion of the Bacillus subtilis GTPase CpgA produces abnormal cell shapes, nonuniform deposition of cell wall, and five- to sixfold accumulation of peptidoglycan precursors. Nevertheless, ...

Chargement des enrichissements...