Differentiation and neural integration of hippocampal neuronal progenitors: Signaling pathways sequentially involved

Archive ouverte

Akchiche, Nassila | Bossenmeyer-Pourié, Carine | Pourié, Grégory | Koziel, Violette | Nédélec, Emmanuelle | Guéant, Jean-Louis | Daval, Jean-Luc

Edité par CCSD ; Wiley -

International audience. In the context of their potential implication in regenerative strategies, we characterized cell mechanisms underlying the fate of embryonic rat hippocampal H19-7 progenitors in culture upon induction of their differentiation, and tested their capacities to integrate into a neuronal network in vitro. Without addition of growth factors, nearly 100% of cells expressed various neuronal markers, with a progressive rise of the expression of Synapsin I and II, suggesting that cells developed as mature neurons with synaptogenic capacities. Fully differentiated neurons were identified as glutamatergic and expressed the receptor-associated protein PSD-95. Quantification of ATP showed that 60% of cells died within 24 h after differentiation. Cell death was shown to imply Erk1/2-dependent intrinsic mitochondrial apoptosis signaling pathway, with activation of caspase-9 and -3, finally leading to single-strand DNA. Surviving neurons displayed high levels of Akt, phospho-Akt, and antiapoptotic proteins such as Bcl-2 and Bcl-XL, with decreased caspase activation. In the absence of trophic support, the proapoptotic death-associated protein (DAP) kinase was dramatically stimulated by 24 h postdifferentiation, along with increased levels of p38 and phospho-p38, and caspase reactivation. These findings show that different signaling pathways are sequentially triggered by differentiation, and highlight that ultimate cell death would involve p38 and DAP kinase activation. This was supported by the improvement of cell survival at 24-h postdifferentiation when cells were treated by PD169316, a specific inhibitor of p38. Finally, when seeded on rat hippocampal primary cultured neurons, a significant number of differentiated H19-7 cells were able to survive and to develop cell-cell communication. (c) 2009 Wiley-Liss, Inc.

Consulter en ligne

Suggestions

Du même auteur

Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells.

Archive ouverte | Akchiche, Nassila | CCSD

International audience. Despite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency ...

Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat

Archive ouverte | Bossenmeyer-Pourié, Carine | CCSD

Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastr...

Folate- and vitamin B-12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha

Archive ouverte | Pourié, Grégory | CCSD

Deficiency in the methyl donors vitamin B-12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat m...

Chargement des enrichissements...