Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression.

Archive ouverte

Blanchardon, Eric | Grima, Brigitte | Klarsfeld, André | Rouyer, François | Chélot, Elisabeth | E. Hardin, Paul | Préat, Thomas

Edité par CCSD ; Wiley -

The ventral lateral neurons (LNvs) of the Drosophila brain that express the period (per) and pigment dispersing factor (pdf) genes play a major role in the control of circadian activity rhythms. A new P-gal4 enhancer trap line is described that is mostly expressed in the LNvs This P-gal4 line was used to ablate the LNvs by using the pro-apoptosis gene bax, to stop PER protein oscillations by overexpressing per and to block synaptic transmission with the tetanus toxin light chain (TeTxLC). Genetic ablation of these clock cells leads to the loss of robust 24-h activity rhythms and reveals a phase advance in light-dark conditions as well as a weak short-period rhythm in constant darkness. This behavioural phenotype is similar to that described for disconnected1 (disco1) mutants, in which we show that the majority of the individuals have a reduced number of dorsally projecting lateral neurons which, however, fail to express PER. In both LNv-ablated and disco1 flies, PER cycles in the so-called dorsal neurons (DNs) of the superior protocerebrum, suggesting that the weak short-period rhythm could stem from these PDF-negative cells. The overexpression of per in LNs suppresses PER protein oscillations and leads to the disruption of both activity and eclosion rhythms, indicating that PER cycling in these cells is required for both of these rhythmic behaviours. Interestingly, flies overexpressing PER in the LNs do not show any weak short-period rhythms, although PER cycles in at least a fraction of the DNs, suggesting a dominant role of the LNs on the behavioural rhythms. Expression of TeTxLC in the LNvs does not impair activity rhythms, which indicates that the PDF-expressing neurons do not use synaptobrevin-dependent transmission to control these rhythms.

Consulter en ligne

Suggestions

Du même auteur

CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock.

Archive ouverte | Grima, Brigitte | CCSD

International audience. Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK ...

The F-box protein slimb controls the levels of clock proteins period and timeless.

Archive ouverte | Grima, Brigitte | CCSD

The Drosophila circadian clock is driven by daily fluctuations of the proteins Period and Timeless, which associate in a complex and negatively regulate the transcription of their own genes. Protein phosphorylation has a central r...

Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.

Archive ouverte | Grima, Brigitte | CCSD

In Drosophila, a 'clock' situated in the brain controls circadian rhythms of locomotor activity. This clock relies on several groups of neurons that express the Period (PER) protein, including the ventral lateral neurons (LN(v)s),...

Chargement des enrichissements...