0 avis
Signal Regulatory Proteins Negatively Regulate Immunoreceptor-dependent Cell Activation
Archive ouverte
Edité par CCSD ; American Society for Biochemistry and Molecular Biology -
International audience. Signal regulatory proteins of the alpha subtype (SIRPalpha) are ubiquitous molecules of the immunoglobulin superfamily that negatively regulate protein tyrosine kinase receptor-dependent cell proliferation. Their intracytoplasmic domain contains four motifs that resemble immunoreceptor tyrosine-based inhibition motifs (ITIMs) and that, when tyrosyl-phosphorylated, recruit cytoplasmic SH2 domain-bearing protein tyrosine phosphatases (SHPs). ITIMs are borne by molecules that negatively regulate cell activation induced by receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs). Because SIRPalpha are coexpressed with ITAM-bearing receptors in hematopoietic cells, we investigated whether SIRPalpha could negatively regulate ITAM-dependent cell activation. We found SIRPalpha transcripts in human mast cells, and we show that a chimeric molecule having the transmembrane and intracytoplasmic domains of SIRPalpha could inhibit IgE-induced mediator secretion and cytokine synthesis by mast cells. Inhibition required that the SIRPalpha chimera was coaggregated with ITAM-bearing high affinity IgE receptors (FcepsilonRI). It was correlated with the tyrosyl phosphorylation of the SIRPalpha chimera and the recruitment of SHP-1 and SHP-2. The phosphorylation of FcepsilonRI ITAMs was decreased; the mobilization of intracellular Ca(2+) and the influx of extracellular Ca(2+) were reduced, and the activation of the mitogen-activated protein kinases Erk1 and Erk2 was abolished. SIRPalpha can therefore negatively regulate not only receptor tyrosine kinase-dependent cell proliferation but also ITAM-dependent cell activation.