Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa

Archive ouverte

Jeffries, Claire, L. | Lawrence, Gena, G. | Golovko, George | Kristan, Mojca | Orsborne, James | Spence, Kirstin | Hurn, Eliot | Bandibabone, Janvier | Tantely, Luciano, M | Raharimalala, Fara, Nantenaina | Keita, Kalil | Camara, Denka | Barry, Yaya | Wat'Senga, Francis | Manzambi, Emile, Z | Afrane, Yaw, A | Mohammed, Abdul, R | Abeku, Tarekegn, A | Hedge, Shivanand | Khanipov, Kamil | Pimenova, Maria | Fofanov, Yuriy | Boyer, Sébastien | Irish, Seth, R | Hughes, Grant, L | Walker, Thomas

Edité par CCSD ; F1000Research -

International audience. Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies.

Suggestions

Du même auteur

Diverse novel resident Wolbachia strains in Culicine mosquitoes from Madagascar

Archive ouverte | Jeffries, Claire, L | CCSD

International audience. Wolbachia endosymbiotic bacteria are widespread throughout insect species and Wolbachia transinfected in Aedes mosquito species has formed the basis for biocontrol programs as Wolbachia strai...

Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon

Archive ouverte | Mayi, Marie Paul Audrey | CCSD

International audience. To identify potential sylvatic, urban and bridge-vectors that can be involved in current or future virus spillover from wild to more urbanised areas, entomological field surveys were conducte...

Investigating molecular mechanisms of insecticide resistance in the Eastern Democratic Republic of the Congo

Archive ouverte | Bandibabone, Janvier | CCSD

International audience. Background : Malaria vector control in the Democratic Republic of the Congo is plagued by several major challenges, including inadequate infrastructure, lack of access to health care systems ...

Chargement des enrichissements...