Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis.

Archive ouverte

Vartanian, Jean Pierre | Henry, Michel | Marchio, Agnès | Suspène, Rodolphe | Aynaud, Marie-Ming | Guétard, Denise | Cervantes-Gonzalez, Minerva | Battiston, Carlo | Mazzaferro, Vincenzo | Pineau, Pascal | Dejean, Anne | Wain-Hobson, Simon

Edité par CCSD ; Public Library of Science -

International audience. DNA viruses, retroviruses and hepadnaviruses, such as hepatitis B virus (HBV), are vulnerable to genetic editing of single stranded DNA by host cell APOBEC3 (A3) cytidine deaminases. At least three A3 genes are up regulated by interferon-alpha in human hepatocytes while ectopic expression of activation induced deaminase (AICDA), an A3 paralog, has been noted in a variety of chronic inflammatory syndromes including hepatitis C virus infection. Yet virtually all studies of HBV editing have confined themselves to analyses of virions from culture supernatants or serum where the frequency of edited genomes is generally low (< or = 10(-2)). We decided to look at the nature and frequency of HBV editing in cirrhotic samples taken during removal of a primary hepatocellular carcinoma. Forty-one cirrhotic tissue samples (10 alcoholic, 10 HBV(+), 11 HBV(+)HCV(+) and 10 HCV(+)) as well as 4 normal livers were studied. Compared to normal liver, 5/7 APOBEC3 genes were significantly up regulated in the order: HCV+/-HBV>HBV>alcoholic cirrhosis. A3C and A3D were up regulated for all groups while the interferon inducible A3G was over expressed in virus associated cirrhosis, as was AICDA in approximately 50% of these HBV/HCV samples. While AICDA can indeed edit HBV DNA ex vivo, A3G is the dominant deaminase in vivo with up to 35% of HBV genomes being edited. Despite these highly deleterious mutant spectra, a small fraction of genomes survive and contribute to loss of HBeAg antigenemia and possibly HBsAg immune escape. In conclusion, the cytokine storm associated with chronic inflammatory responses to HBV and HCV clearly up regulates a number of A3 genes with A3G clearly being a major restriction factor for HBV. Although the mutant spectrum resulting from A3 editing is highly deleterious, a very small part, notably the lightly edited genomes, might help the virus evolve and even escape immune responses.

Suggestions

Du même auteur

Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism.

Archive ouverte | Suspène, Rodolphe | CCSD

International audience. The human APOBEC3 (A3A-A3H) locus encodes six cytidine deaminases that edit single-stranded DNA, the result being DNA peppered with uridine. Although several cytidine deaminases are clearly r...

A universal primer set for PCR amplification of nuclear histone H4 genes from all animal species.

Archive ouverte | Pineau, Pascal | CCSD

To control the quality of genomic DNA of samples from a wide variety of animals, a heminested PCR assay specifically targeting a nuclear gene has been developed. The histone H4 gene family comprises a small number of genes conside...

Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines.

Archive ouverte | Suspène, Rodolphe | CCSD

International audience. We sought to examine ADAR-1 editing of measles and influenza virus genomes derived from inactivated seasonal influenza and live attenuated measles virus vaccines grown on chicken cells as the...

Chargement des enrichissements...