Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach

Archive ouverte

Cearns, Micah | Amare, Azmeraw | Schubert, Klaus Oliver | Thalamuthu, Anbupalam | Frank, Joseph | Streit, Fabian | Adli, Mazda | Akula, Nirmala | Akiyama, Kazufumi | Ardau, Raffaella | Arias, Bárbara | Aubry, Jean-Michel | Backlund, Lena | Bhattacharjee, Abesh Kumar | Bellivier, Frank | Benabarre, Antonio | Bengesser, Susanne | Biernacka, Joanna | Birner, Armin | Brichant-Petitjean, Clara | Cervantes, Pablo | Chen, Hsi-Chung | Chillotti, Caterina | Cichon, Sven | Cruceanu, Cristiana | Czerski, Piotr | Dalkner, Nina | Dayer, Alexandre | Degenhardt, Franziska | Zompo, Maria Del | Depaulo, J Raymond | Étain, Bruno | Falkai, Peter | Forstner, Andreas | Frisen, Louise | Frye, Mark | Fullerton, Janice | Gard, Sébastien | Garnham, Julie | Goes, Fernando | Grigoroiu-Serbanescu, Maria | Grof, Paul | Hashimoto, Ryota | Hauser, Joanna | Heilbronner, Urs | Herms, Stefan | Hoffmann, Per | Hofmann, Andrea | Hou, Liping | Hsu, Yi-Hsiang | Jamain, Stephane | Jiménez, Esther | Kahn, Jean-Pierre | Kassem, Layla | Kuo, Po-Hsiu | Kato, Tadafumi | Kelsoe, John | Kittel-Schneider, Sarah | Kliwicki, Sebastian | König, Barbara | Kusumi, Ichiro | Laje, Gonzalo | Landén, Mikael | Lavebratt, Catharina | Leboyer, Marion | Leckband, Susan | Maj, Mario | Manchia, Mirko | Martinsson, Lina | Mccarthy, Michael | Mcelroy, Susan | Colom, Francesc | Mitjans, Marina | Mondimore, Francis | Monteleone, Palmiero | Nievergelt, Caroline | Nöthen, Markus | Novák, Tomas | O'Donovan, Claire | Ozaki, Norio | Millischer, Vincent | Papiol, Sergi | Pfennig, Andrea | Pisanu, Claudia | Potash, James | Reif, Andreas | Reininghaus, Eva | Rouleau, Guy | Rybakowski, Janusz | Schalling, Martin | Schofield, Peter | Schweizer, Barbara | Severino, Giovanni | Shekhtman, Tatyana | Shilling, Paul | Shimoda, Katzutaka | Simhandl, Christian | Slaney, Claire | Squassina, Alessio | Stamm, Thomas | Stopkova, Pavla | Tekola-Ayele, Fasil | Tortorella, Alfonso | Turecki, Gustavo | Veeh, Julia | Vieta, Eduard | Witt, Stephanie | Roberts, Gloria | Zandi, Peter | Alda, Martin | Bauer, Michael | Mcmahon, Francis | Mitchell, Philip | Schulze, Thomas | Rietschel, Marcella | Clark, Scott | Baune, Bernhard

Edité par CCSD ; Royal College of Psychiatrists -

International audience. Background Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. Aims To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. Method This study utilised genetic and clinical data ( n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi + Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. Results The best performing linear model explained 5.1% ( P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% ( P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% ( P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. Conclusions Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

Suggestions

Du même auteur

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach – CORRIGENDUM

Archive ouverte | Cearns, Micah | CCSD

International audience

Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients

Archive ouverte | Marie-Claire, Cynthia | CCSD

International audience. Abstract Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response hetero...

Exploring the genetics of lithium response in bipolar disorders

Archive ouverte | Herrera-Rivero, Marisol | CCSD

International audience. Abstract Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide ris...

Chargement des enrichissements...