The FMRP/GRK4mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum

Archive ouverte

Maurin, Thomas | Melko, Mireille | Abekhoukh, Sabiha | Khalfallah, Olfa | Davidovic, Laetitia | Jarjat, Marielle | d'Antoni, Simona | Catania, Maria Vincenza | Moine, Hervé | Bechara, Elias, Georges

Edité par CCSD ; Oxford University Press -

International audience. Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The Cterminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 subdomain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.

Suggestions

Du même auteur

FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure.

Archive ouverte | Bensaid, Mounia | CCSD

International audience. FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FM...

A novel function for fragile x mental retardation protein in translational activation.

Archive ouverte | Bechara, Elias, G. | CCSD

International audience. Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several st...

Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis

Archive ouverte | Cestèle, Sandrine | CCSD

International audience

Chargement des enrichissements...