NMFProfiler: a multi-omics integration method for samples stratified in groups

Archive ouverte

Mercadié, Aurélie | Gravier, Éléonore | Josse, Gwendal | Fournier, Isabelle | Viodé, Cécile | Vialaneix, Nathalie | Brouard, Céline

Edité par CCSD ; Oxford University Press (OUP) -

International audience. Motivation The development of high-throughput sequencing enabled the massive production of “omics” data for various applications in biology. By analyzing simultaneously paired datasets collected on the same samples, integrative statistical approaches allow researchers to get a global picture of such systems and to highlight existing relationships between various molecular types and levels. Here, we introduce NMFProfiler, an integrative supervised NMF that accounts for the stratification of samples into groups of biological interest. Results NMFProfiler was shown to successfully extract signatures characterizing groups with performances comparable to or better than state-of-the-art approaches. In particular, NMFProfiler was used in a clinical study on atopic dermatitis (AD) and to analyze a multi-omic cancer dataset. In the first case, it successfully identified signatures combining known AD protein biomarkers and novel transcriptomic biomarkers. In addition, it was also able to extract signatures significantly associated to cancer survival. Availability and implementation NMFProfiler is released as a Python package, NMFProfiler (v0.3.0), available on PyPI.

Consulter en ligne

Suggestions

Du même auteur

Extension de la NMF supervisée pour l'intégration de données omiques

Archive ouverte | Mercadié, Aurélie | CCSD

International audience

Extension de la NMF supervisée pour l'intégration de données omiques

Archive ouverte | Mercadié, Aurélie | CCSD

National audience. Le but de cette communication est de présenter une nouvelle méthode d'intégration découvrant des relations entre données « omiques » qui caractérisent des profils typiques de groupes distincts d'i...

Should we really use graph neural networks for transcriptomic prediction?

Archive ouverte | Brouard, Céline | CCSD

International audience. The recent development of deep learning methods have undoubtedly led to great improvement in various machine learning tasks, especially in prediction tasks. This type of methods have also bee...

Chargement des enrichissements...