0 avis
Integrating food webs in species distribution models can improve ecological niche estimation and predictions
Archive ouverte
International audience.
Biotic interactions play a fundamental role in shaping multitrophic species communities, yet incorporating these interactions into species distribution models (SDMs) remains challenging. With the growing availability of species interaction networks, it is now feasible to integrate these interactions into SDMs for more comprehensive predictions. Here, we propose a novel framework that combines trophic interaction networks with Bayesian structural equation models, enabling each species to be modeled based on its interactions with predators or prey alongside environmental factors. This framework addresses issues of multicollinearity and error propagation, making it possible to predict species distributions in unobserved locations or under future environmental conditions, even when prey or predator distributions are unknown. We tested and validated our framework on realistic simulated communities spanning different theoretical models and ecological setups. scenarios. Our approach significantly improved the estimation of both potential and realized niches compared to single SDMs, with mean performance gains of 8% and 6%, respectively. These improvements were especially notable for species strongly regulated by biotic factors, thereby enhancing model predictive accuracy. Our framework supports integration with various SDM extensions, such as occupancy and integrated models, offering flexibility and adaptability for future developments. While not a universal solution that consistently outperforms single SDMs, our approach provides a valuable new tool for modeling multitrophic community distributions when biotic interactions are known or assumed.