Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence

Archive ouverte

Louis, Thomas | Lucia, François | Cousin, François | Mievis, Carole | Jansen, Nicolas | Duysinx, Bernard | Le Pennec, Romain | Visvikis, Dimitris | Nebbache, Malik | Rehn, Martin | Hamya, Mohamed | Geier, Margaux | Salaun, Pierre-Yves | Schick, Ulrike | Hatt, Mathieu | Coucke, Philippe | Lovinfosse, Pierre | Hustinx, Roland

Edité par CCSD -

International audience. The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset. © The Author(s) 2024.

Consulter en ligne

Suggestions

Du même auteur

Multicentric development and evaluation of [18F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy

Archive ouverte | Lucia, François | CCSD

International audience. Purpose: To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation ...

[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation

Archive ouverte | Ferreira, Marta | CCSD

International audience. Purpose To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[ 18 F] fluoro-2-deoxy-D-glucose ([ 18 F]FDG) PET/CT and combined w...

Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer

Archive ouverte | Lucia, François | CCSD

International audience. To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG P...

Chargement des enrichissements...