The evolutionary history and functional specialization of microRNA genes in Arabidopsis halleri and A. lyrata

Archive ouverte

Pavan, Flavia | Azevedo Favory, Jacinthe | Lacoste, Eléanore | Beaumont, Chloé | Louis, Firas | Blassiau, Christelle | Cruaud, Corinne | Labadie, Karine | Gallina, Sophie | Genete, Mathieu | Kumar, Vinod | Kramer, Ute | Batista, Rita, A | Patiou, Claire | Debacker, Laurence | Ponitzki, Chloé | Houzé, Esther | Durand, Eléonore | Aury, Jean-Marc | Castric, Vincent | Legrand, Sylvain

Edité par CCSD -

Abstract MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important regulatory roles in plant genomes. While some miRNA genes are deeply conserved, the majority appear to be species-specific, raising the question of how they emerge and integrate into cellular regulatory networks. To better understand this, we first performed a detailed annotation of miRNA genes in the closely related plants Arabidopsis halleri and A. lyrata and evaluated their phylogenetic conservation across 87 plant species. We then characterized the process by which newly emerged miRNA genes progressively acquire the properties of “canonical” miRNA genes, in terms of size and stability of the hairpin precursor, loading of their cleavage products into Argonaute proteins, and potential to regulate downstream target genes. Nucleotide polymorphism was lower in the mature miRNA sequence than in the other parts of the hairpin (stem, terminal loop), and the regions of coding sequences targeted by miRNAs also had reduced diversity as compared to their neighboring regions along the genes. These patterns were less pronounced for recently emerged than for evolutionarily conserved miRNA genes, suggesting a weaker selective constraint on the most recent miRNA genes. Our results illustrate the rapid birth-and-death of miRNA genes in plant genomes, and provide a detailed picture of the evolutionary processes by which a small fraction of them eventually integrate into “core” biological processes.

Suggestions

Du même auteur

Dominance modifiers at the Arabidopsis self-incompatibility locus retain proto-miRNA features and act through non-canonical pathways

Archive ouverte | Batista, Rita, A | CCSD

Abstract Self-incompatibility in flowering plants is a common mechanism that prevents self-fertilization and promotes outcrossing. In Brassicaceae, there is high genetic diversity at the locus controlling self-incompatibility, and...

Scenarios for the emergence of new microRNA genes in the plant Arabidopsis halleri

Archive ouverte | Pavan, Flavia | CCSD

International audience. Abstract MicroRNAs (miRNAs) are central players in the regulation of gene expression in eukaryotes. The repertoires of miRNA genes vary drastically even among closely related species, indicat...

Scenarios for the emergence of new miRNA genes in the plant Arabidopsis halleri

Archive ouverte | Pavan, Flavia | CCSD

Abstract MicroRNAs (miRNAs) are central players of the regulation of gene expression in Eukaryotes. The repertoires of miRNA genes vary drastically even among closely related species, indicating that they are evolutionarily labile...

Chargement des enrichissements...