Cholinergic regulation of cardiac pacemaker activity by l-type cav1.3 channels

Archive ouverte

Talssi, Leïla | Bidaud, Isabelle | Mesirca, Pietro | Mangoni, Matteo E.

Edité par CCSD ; Oxford University Press -

International audience. Introduction : The cholinergic regulation of heart rate (HR) is mediated by acetylcholine (ACh)-dependent activation of M2-receptors (M2R). Activated M2R promote release of the βγ-subunit of G-proteins to directly gate GIRK1/4 channels (underlying the cardiac IKACh current), while αi-subunits inhibit adenylate cyclase (AC) activity. AC inhibition reduces the intracellular concentration of cAMP, decreasing the activity of ion channels involved in pacemaking, including “funny” f-(HCN4) and L-type Cav1.3 calcium channels. Purpose : To determine the importance of L-type Cav1.3 channels in the cholinergic regulation of heart rate. Methods : We recorded the frequency and the position of the pacemaker leading site in ex vivo sinus nodes and the HR of isolated Langendorff perfused hearts of mice in control or during ACh perfusion. We used control wild type (WT) mice, and five genetically modified mouse models: Cav1.3 knockout (KO, ablated Cav1.3-mediated L-type current), GIRK4KO (ablated IKACh current), HCN4-CNBD (selective deletion of cAMP-dependent regulation of HCN4), GIRK4KO/HCN4-CNBD and GIRK4KO/Cav1.3KO. Results : Data from optical mapping experiments showed that, under basal conditions, perfusion of 3 μM ACh significantly reduced the frequency of action potentials in WT (44%), HCN4-CNBD (38%), Cav1.3KO (65%) and GIRK4KO (8%) isolated mouse sinus node tissues. ACh application did not significantly affect the frequency of action potentials recorded in tissue from GIRK4KO/HCN4-CNBD and GIRK4KO/Cav1.3KO animals. Furthermore, in all the sinus node tissues tested, regardless of the genotypes, ACh shifted the pacemaker leading site from its normal position by at least 0.7 mm. Upon stimulation of the β-adrenergic pathway by Isoproterenol, to reproduce conditions of accentuated antagonism, 3μM ACh reduced HR in isolated hearts from WT (43.8%), HCN4-CNBD (38.7%), Cav1.3KO (25,4%), GIRK4KO (16.9%) and GIRK4KO/HCN4-CNBD (16.4%) mice. No significant HR reduction was recorded in hearts from GIRK4KO/Cav1.3KO animals. Conclusion : Our data indicate that L-type Cav1.3 channels are involved in cholinergic regulation of heart rate in mice. In addition, when the intracellular concentration of cAMP is elevated (i.e. under conditions of accentuated antagonism), the cholinergic regulation of sinus node pacemaking is predominantly ensured by Cav1.3 and KACh channels.

Consulter en ligne

Suggestions

Du même auteur

Concomitant genetic ablation of L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels disrupts heart automaticity

Archive ouverte | Baudot, Matthias | CCSD

International audience. Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells ...

Functional role for the GIRK1/4, Cav1.3 and HCN4 channels in muscarinic regulation of heart rate

Archive ouverte | Talssi, Leïla | CCSD

International audience. Parasympathetic (cholinergic) stimulation slows the heart- rate (HR) by decreasing the spontaneous and non-invasively these abnormalities in the subclinicalstate.

L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells

Archive ouverte | Louradour, Julien | CCSD

International audience. Background: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (...

Chargement des enrichissements...