Using Machine Learning on MRI Radiomics to Diagnose Parotid Tumours Before Comparing Performance with Radiologists: A Pilot Study

Archive ouverte

Ammari, Samy | Quillent, Arnaud | Elvira, Víctor | Bidault, François | Garcia, Gabriel | Hartl, Dana | Balleyguier, Corinne | Lassau, Nathalie | Chouzenoux, Émilie

Edité par CCSD ; Springer Nature -

International audience. The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and specificity, often leading to surgery for diagnostic purposes. The aim of this paper is (1) to develop a machine learning algorithm based on MR images characteristics to automatically classify parotid gland tumours and (2) compare its results with the diagnoses of junior and senior radiologists in order to evaluate its utility in routine practice. While automatic algorithms applied to parotid tumours classification have been developed in the past, we believe that our study is one of the first to leverage four different MRI sequences and propose a comparison with clinicians. In this study, we leverage data coming from a cohort of 134 patients treated for benign or malignant parotid tumours. Using radiomics extracted from the MR images of the gland, we train a random forest and a logistic regression to predict the corresponding histopathological subtypes. On the test set, the best results are given by the random forest: we obtain a 0.720 accuracy, a 0.860 specificity, and a 0.720 sensitivity over all histopathological subtypes, with an average AUC of 0.838. When considering the discrimination between benign and malignant tumours, the algorithm results in a 0.760 accuracy and a 0.769 AUC, both on test set. Moreover, the clinical experiment shows that our model helps to improve diagnostic abilities of junior radiologists as their sensitivity and accuracy raised by 6 % when using our proposed method. This algorithm may be useful for training of physicians. Radiomics with a machine learning algorithm may help improve discrimination between benign and malignant parotid tumours, decreasing the need for diagnostic surgery. Further studies are warranted to validate our algorithm for routine use.

Suggestions

Du même auteur

Contrast-enhanced brain MRI synthesis with deep learning: key input modalities and asymptotic performance

Archive ouverte | Bône, Alexandre | CCSD

International audience. Contrast-enhanced medical images offer vital insights for the accurate diagnosis, characterization and treatment of tumors, and are routinely used worldwide. Acquiring such images requires to...

A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI

Archive ouverte | Ammari, Samy | CCSD

International audience. Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could rep...

Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab

Archive ouverte | Ammari, Samy | CCSD

International audience. Anti-angiogenic therapy with bevacizumab is a widely used therapeutic option for recurrent glioblastoma (GBM). Nevertheless, the therapeutic response remains highly heterogeneous among GBM pa...

Chargement des enrichissements...