Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models

Archive ouverte

Allesøe, Rosa Lundbye | Lundgaard, Agnete Troen | Hernández Medina, Ricardo | Aguayo-Orozco, Alejandro | Johansen, Joachim | Nissen, Jakob Nybo | Brorsson, Caroline | Mazzoni, Gianluca | Niu, Lili | Biel, Jorge Hernansanz | Leal Rodríguez, Cristina | Brasas, Valentas | Webel, Henry | Benros, Michael Eriksen | Pedersen, Anders Gorm | Chmura, Piotr Jaroslaw | Jacobsen, Ulrik Plesner | Mari, Andrea | Koivula, Robert | Mahajan, Anubha | Vinuela, Ana | Tajes, Juan Fernandez | Sharma, Sapna | Haid, Mark | Hong, Mun-Gwan | Musholt, Petra | de Masi, Federico | Vogt, Josef | Pedersen, Helle Krogh | Gudmundsdottir, Valborg | Jones, Angus | Kennedy, Gwen | Bell, Jimmy | Thomas, E. Louise | Frost, Gary | Thomsen, Henrik | Hansen, Elizaveta | Hansen, Tue Haldor | Vestergaard, Henrik | Muilwijk, Mirthe | Blom, Marieke | Pattou, Francois | Raverdy, Violeta | Brage, Soren | Kokkola, Tarja | Heggie, Alison | Mcevoy, Donna | Mourby, Miranda | Kaye, Jane | Hattersley, Andrew | Mcdonald, Timothy | Ridderstråle, Martin | Walker, Mark | Forgie, Ian | Giordano, Giuseppe | Pavo, Imre | Ruetten, Hartmut | Pedersen, Oluf | Hansen, Torben | Dermitzakis, Emmanouil | Franks, Paul | Schwenk, Jochen | Adamski, Jerzy | Mccarthy, Mark | Pearson, Ewan | Banasik, Karina | Rasmussen, Simon | Brunak, Søren | Froguel, Philippe | Thomas, Cecilia Engel | Haussler, Ragna | Beulens, Joline | Rutters, Femke | Nijpels, Giel | van Oort, Sabine | Groeneveld, Lenka | Elders, Petra | Giorgino, Toni | Rodriquez, Marianne | Nice, Rachel | Perry, Mandy | Bianzano, Susanna | Graefe-Mody, Ulrike | Hennige, Anita | Grempler, Rolf | Baum, Patrick | Stærfeldt, Hans-Henrik | Shah, Nisha | Teare, Harriet | Ehrhardt, Beate | Tillner, Joachim | Dings, Christiane | Lehr, Thorsten | Scherer, Nina | Sihinevich, Iryna | Cabrelli, Louise | Loftus, Heather | Bizzotto, Roberto | Tura, Andrea | Dekkers, Koen | van Leeuwen, Nienke | Groop, Leif | Slieker, Roderick | Ramisch, Anna | Jennison, Christopher | Mcvittie, Ian | Frau, Francesca | Steckel-Hamann, Birgit | Adragni, Kofi | Thomas, Melissa | Pasdar, Naeimeh Atabaki | Fitipaldi, Hugo | Kurbasic, Azra | Mutie, Pascal | Pomares-Millan, Hugo | Bonnefond, Amelie | Canouil, Mickael | Caiazzo, Robert | Verkindt, Helene | Holl, Reinhard | Kuulasmaa, Teemu | Deshmukh, Harshal | Cederberg, Henna | Laakso, Markku | Vangipurapu, Jagadish | Dale, Matilda | Thorand, Barbara | Nicolay, Claudia | Fritsche, Andreas | Hill, Anita | Hudson, Michelle | Thorne, Claire | Allin, Kristine | Arumugam, Manimozhiyan | Jonsson, Anna | Engelbrechtsen, Line | Forman, Annemette | Dutta, Avirup | Sondertoft, Nadja | Fan, Yong | Gough, Stephen | Robertson, Neil | Mcrobert, Nicky | Wesolowska-Andersen, Agata | Brown, Andrew | Davtian, David | Dawed, Adem | Donnelly, Louise | Palmer, Colin | White, Margaret | Ferrer, Jorge | Whitcher, Brandon | Artati, Anna | Prehn, Cornelia | Adam, Jonathan | Grallert, Harald | Gupta, Ramneek | Sackett, Peter Wad | Nilsson, Birgitte | Tsirigos, Konstantinos | Eriksen, Rebeca | Jablonka, Bernd | Uhlen, Mathias | Gassenhuber, Johann | Baltauss, Tania | de Preville, Nathalie | Klintenberg, Maria | Abdalla, Moustafa

Edité par CCSD ; Nature Publishing Group -

International audience. Abstract The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.

Consulter en ligne

Suggestions

Du même auteur

Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study

Archive ouverte | Tura, Andrea | CCSD

International audience. Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glu...

Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

Archive ouverte | Brown, Andrew | CCSD

International audience. Abstract We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where m...

A reference map of potential determinants for the human serum metabolome

Archive ouverte | Bar, Noam | CCSD

International audience

Chargement des enrichissements...