The value of genomic relationship matrices to estimate levels of inbreeding

Archive ouverte

Villanueva, Beatriz | Fernández, Almudena | Saura, María | Caballero, Armando | Fernández, Jesús | Morales-González, Elisabeth | Toro, Miguel A. | Pong-Wong, Ricardo

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundGenomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there are several methodologies to compute these matrices and there is still an unresolved debate on which one provides the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism genotypes in a population of Iberian pigs.ResultsExcept for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreeding coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate that more variability than that present in the base population can be lost, which is also unreasonable. The patterns for these coefficients observed in the pig population were very different, following the derived expectations. As a consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in magnitude but also in sign.ConclusionsGenomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of genomic predictions, they do not always provide a useful measure of inbreeding.

Suggestions

Du même auteur

Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes

Archive ouverte | Saura, María | CCSD

International audience. The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started ...

A comparison of marker-based estimators of inbreeding and inbreeding depression

Archive ouverte | Caballero, Armando | CCSD

International audience. AbstractBackgroundThe availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rat...

Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data

Archive ouverte | Saura, María | CCSD

International audience. Background The current availability of genotypes for very large numbers of single nucleotide polymorphisms (SNPs) is leading to more accurate estimates of inbreeding coefficients and more det...

Chargement des enrichissements...