Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy

Archive ouverte

Dercle, Laurent | Mcgale, Jeremy | Sun, Shawn | Marabelle, Aurelien | Yeh, Randy | Deutsch, Eric | Mokrane, Fatima-Zohra | Farwell, Michael | Ammari, Samy | Schoder, Heiko | Zhao, Binsheng | Schwartz, Lawrence

Edité par CCSD ; BMJ Publishing Group -

International audience. Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.

Consulter en ligne

Suggestions

Du même auteur

Emerging and Evolving Concepts in Cancer Immunotherapy Imaging

Archive ouverte | Dercle, Laurent | CCSD

International audience. Criteria based on measurements of lesion diameter at CT have guided treatment with historical therapies due to the strong association between tumor size and survival. Clinical experience with...

Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: association with outcome and transcriptomics

Archive ouverte | Seban, Romain-David | CCSD

International audience

Imaging-guided precision medicine in non-resectable gastro-entero-pancreatic neuroendocrine tumors: A step-by-step approach

Archive ouverte | Rozenblum, Laura | CCSD

International audience

Chargement des enrichissements...