Longitudinal genomic analyses of automatically-recorded vaginal temperature in lactating sows under heat stress conditions based on random regression models

Archive ouverte

Wen, Hui | Johnson, Jay S. | Freitas, Pedro H. F. | Maskal, Jacob M. | Gloria, Leonardo S. | Araujo, Andre C. | Pedrosa, Victor B. | Tiezzi, Francesco | Maltecca, Christian | Huang, Yijian | Schinckel, Allan P. | Brito, Luiz F.

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundAutomatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV.ResultsHeritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, − 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ˚C). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370–59.998 Mb) and16 (21.548–21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production.ConclusionsTV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.

Suggestions

Du même auteur

Genetic parameters for novel climatic resilience indicators derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions

Archive ouverte | Wen, Hui | CCSD

International audience. AbstractBackgroundLongitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding ...

Genetic parameters for automatically-measured vaginal temperature, respiration efficiency, and other thermotolerance indicators measured on lactating sows under heat stress conditions

Archive ouverte | Freitas, Pedro H. F. | CCSD

International audience. AbstractBackgroundGenetic selection based on direct indicators of heat stress could capture additional mechanisms that are involved in heat stress response and enable more accurate selection ...

Genotype-by-environment interactions for reproduction, body composition, and growth traits in maternal-line pigs based on single-step genomic reaction norms

Archive ouverte | Chen, Shi-Yi | CCSD

International audience. AbstractBackgroundThere is an increasing need to account for genotype-by-environment (G × E) interactions in livestock breeding programs to improve productivity and animal welfare across envi...

Chargement des enrichissements...