Exploring the cellular surface polysaccharide and root nodule symbiosis characteristics of the rpoN mutants of Bradyrhizobium sp. DOA9 using synchrotron-based Fourier transform infrared microspectroscopy in conjunction with X-ray absorption spectroscopy

Archive ouverte

Wongdee, Jenjira | Piromyou, Pongdet | Songwattana, Pongpan | Greetatorn, Teerana | Boonkerd, Nantakorn | Teaumroong, Neung | Giraud, Eric | Gully, Djamel | Nouwen, Nico | Kiatponglarp, Worawikunya | Tanthanuch, Waraporn | Tittabutr, Panlada

Edité par CCSD ; American Society for Microbiology -

International audience. The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and β-galactopyrano syl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Further more, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nod ules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.

Suggestions

Du même auteur

Role of two RpoN in Bradyrhizobium sp. strain DOA9 in symbiosis and free-living growth

Archive ouverte | Wongdee, Jenjira | CCSD

International audience. RpoN is an alternative sigma factor (sigma 54) that recruits the core RNA polymerase to promoters of genes. In bacteria, RpoN has diverse physiological functions. In rhizobia, RpoN plays a ke...

A new type III effector from Bradyrhizobium sp. DOA9 encoding a putative SUMO-protease blocks nodulation in Arachis hypogaea L.

Archive ouverte | Aphaiso, Beedou | CCSD

International audience. Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T...

Identification of type III effectors modulating the symbiotic properties of Bradyrhizobium vignae strain ORS3257 with various Vigna species

Archive ouverte | Songwattana, Pongpan | CCSD

International audience. The Bradyrhizobium vignae strain ORS3257 is an elite strain recommended for cowpea inoculation in Senegal. This strain was recently shown to establish symbioses on some Aeschynomene species u...

Chargement des enrichissements...