The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington’s disease

Archive ouverte

Farina, Francesca | Lambert, Emmanuel | Commeau, Lucie | Lejeune, François-Xavier | Roudier, Nathalie | Fonte, Cosima | Parker, J. Alex | Boddaert, Jacques | Verny, Marc | Baulieu, Etienne-Emile | Neri, Christian

Edité par CCSD ; Nature Publishing Group -

International audience. Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress response factor FOXO3 is neuroprotective in models of Huntington’s disease (HD), Parkinson’s disease and motor-neuron diseases. Neuroprotective compounds acting in a FOXO-dependent manner could thus constitute bona fide drugs for promoting neuronal compensation. However, whether FOXO-dependent neuroprotection is a common feature of several compound families remains unknown. Using drug screening in C. elegans nematodes with neuronal expression of human exon-1 huntingtin (128Q), we found that 3ß-Methoxy-Pregnenolone (MAP4343), 17ß-oestradiol (17ßE2) and 12 flavonoids including isoquercitrin promote neuronal function in 128Q nematodes. MAP4343, 17ßE2 and isoquercitrin also promote stress resistance in mutant Htt striatal cells derived from knock-in HD mice. Interestingly, daf-16 /FOXO is required for MAP4343, 17ßE2 and isoquercitrin to sustain neuronal function in 128Q nematodes. This similarly applies to the GSK3 inhibitor lithium chloride (LiCl) and, as previously described, to resveratrol and the AMPK activator metformin. Daf-16/FOXO and the targets engaged by these compounds define a sub-network enriched for stress-response and neuronally-active pathways. Collectively, these data highlights the dependence on a daf-16 /FOXO-interaction network as a common feature of several compound families for prolonging neuronal function in HD.

Suggestions

Du même auteur

The stress response factor daf-16 /FOXO is required for multiple compound families to prolong the function of neurons with Huntington’s disease

Archive ouverte | Farina, Francesca | CCSD

International audience. Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress respo...

FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 INK4a increase

Archive ouverte | Voisin, Jessica | CCSD

International audience. Neurodegenerative diseases (ND) have been linked to the critical process in aging-cellular senescence. However, the temporal dynamics of cellular senescence in ND conditions is unresolved. He...

The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity

Archive ouverte | Tourette, Cendrine | CCSD

International audience. The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including c-secretase cleavage and nuclear translocation of its...

Chargement des enrichissements...