Brain-movement relationship during upper-limb functional movements in chronic post-stroke patients

Archive ouverte

Muller, Camille, O | Faity, Germain | Muthalib, Makii | Perrey, S. | Dray, Gérard | Xu, Binbin | Froger, Jérôme | Mottet, Denis | Laffont, Isabelle | Delorme, Marion | Bakhti, Karima

Edité par CCSD ; BioMed Central -

Voir aussi le pre-print : https://doi.org/10.21203/rs.3.rs-3650213/v1. International audience. BackgroundFollowing a stroke, brain activation reorganisation, movement compensatory strategies, motor performance and their evolution through rehabilitation are matters of importance for clinicians. Two non-invasive neuroimaging methods allow for recording task-related brain activation: functional near-infrared spectroscopy (fNIRS) and electroencephalography (fEEG), respectively based on hemodynamic response and neuronal electrical activity. Their simultaneous measurement during movements could allow a better spatiotemporal mapping of brain activation, and when associated to kinematic parameters could unveil underlying mechanisms of functional upper limb (UL) recovery. This study aims to depict the motor cortical activity patterns using combined fNIRS-fEEG and their relationship to motor performance and strategies during UL functional tasks in chronic post-stroke patients.MethodsTwenty-one healthy old adults and 21 chronic post-stroke patients were recruited and completed two standardised functional tasks of the UL: a paced-reaching task where they had to reach a target in front of them and a circular steering task where they had to displace a target using a hand-held stylus, as fast as possible inside a circular track projected on a computer screen. The activity of the bilateral motor cortices and motor performance were recorded simultaneously utilizing a fNIRS-fEEG and kinematics platform.Results and conclusionsKinematic analysis revealed that post-stroke patients performed worse in the circular steering task and used more trunk compensation in both tasks. Brain analysis of bilateral motor cortices revealed that stroke individuals over-activated during the paretic UL reaching task, which was associated with more trunk usage and a higher level of impairment (clinical scores). This work opens up avenues for using such combined methods to better track and understand brain-movement evolution through stroke rehabilitation.

Suggestions

Du même auteur

Brain-movement relationship in upper-limb functional tasks for chronic post-stroke patients

Archive ouverte | Muller, Camille, O | CCSD

International audience. Background and aims. After a stroke, brain activation reorganization, movement compensatory strategies and their evolution through rehabilitation is a subject of major interest. Two non-invas...

Brain-movement relationship in upper-limb functional tasks for chronic post-stroke patients. Lien cerveau-mouvement lors du mouvement du membre supérieur chez des patients post-AVC en phase chronique

Archive ouverte | Faity, Germain | CCSD

International audience. Introduction. Post-stroke brain activations related to paretic movement and their evolution through rehabilitation is a subject of major interest (Jones, 2017). To evaluate the level of funct...

Evaluating the effects of multimodal EEG-fNIRS neurofeedback for motor imagery: An experimental platform and study protocol

Archive ouverte | Muller, Camille, O | CCSD

Background. Neurofeedback (NF) enables the self-regulation of brain activity through real-time feedback extracted from brain measures. Recently, the combination of several neuroimaging methods to characterize brain activity has le...

Chargement des enrichissements...