Cu and Zn stable isotopes in suspended particulate matter sub-fractions from the Northern Bay of Biscay help identify biogenic and geogenic particle pools

Archive ouverte

Ferreira Araujo, Daniel | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Mulholland, Daniel Santos | Bruzac, Sandrine | Sireau, Teddy | Chouvelon, Tiphaine | Brach-Papa, Christophe

Edité par CCSD ; Elsevier -

International audience. Marine suspended particulate matter (SPM) plays a pivotal role in the marine biogeochemical cycling of trace elements. This study investigates metal distributions and copper (Cu) and zinc (Zn) stable isotope ratios in different size fractions of SPM from two sampling stations on the inner continental shelf of northern Bay of Biscay (NE Atlantic), a zone highly influenced by the macrotidal Loire estuary, the outlet of a major European river. The objective of this study is to test stable isotopes as tools to infer the origins of particles and their formation processes, and to infer relevant Cu and Zn biogenic pools involved in marine trophic transfers of these metals. SPM samples were nearly quantitatively mineralized (i.e., without HF) to determine metals and Cu and Zn isotopes in their more labile and reactive phases. Their δ65CuSRM-976 values ranged from −0.45 to +0.51‰, with higher Cu concentrations accompanying particle size decreasing. The δ66ZnJMC-Lyon values in SPM sub-fractions varied from +0.14 to +0.76‰, and were uncorrelated to both Zn concentrations and particle size. Compared to larger size fractions, increased Al and Fe levels (proxies for terrigenous materials) and enrichments in lighter Cu and Zn isotopes observed in the smaller size SPM sub-fractions suggest that a major proportion of SPM Cu and Zn is associated with geogenic particles. Conversely, the relative enrichment of heavy isotopes in coarser particles is attributable to an increase of Cu and Zn metabolically incorporated into biogenic organic particles (e.g., plankton), and by surface adsorption onto organic detrital particles. The higher δ-values attributed to biogenic particles likely represents the isotope composition of the local marine organic matter available to primary consumers like filter-feeders (oysters). Thus, this study shows that targeting particles of specific size classes allows to identify relative dominances of biogenic and geogenic carrier phases. Identifying these pools and their isotopic composition may help track Cu and Zn transfers through marine food-web metal in future studies

Suggestions

Du même auteur

Can copper isotope composition in oysters improve marine biomonitoring and seafood traceability?

Archive ouverte | Ferreira Araujo, Daniel | CCSD

International audience. This study provides the first geographic and temporal large-scale analysis of Cu stable isotope compositions in indigenous oysters to biomonitor anthropogenic Cu inputs in aquatic systems. It...

Differences in Copper Isotope Fractionation Between Mussels (Regulators) and Oysters (Hyperaccumulators): Insights from a Ten-Year Biomonitoring Study

Archive ouverte | Ferreira Araujo, Daniel | CCSD

International audience. Copper (Cu) isotope compositions in bivalve mollusks used in marine-monitoring networks is a promising tool to monitor anthropogenic Cu contamination in coastal and marine ecosystems. To test...

Application of Zn Isotope Compositions in Oysters to Monitor and Quantify Anthropogenic Zn Bioaccumulation in Marine Environments over Four Decades: A “Mussel Watch Program” Upgrade

Archive ouverte | Ferreira Araujo, Daniel | CCSD

International audience. The application of zinc (Zn) isotope compositions in bivalve organisms to quantify anthropogenic Zn bioaccumulation in marine biota is of great interest to environmental marine management pro...

Chargement des enrichissements...