Large effects and the infinitesimal model

Archive ouverte

Parsons, Todd, L | Ralph, Peter, L

Edité par CCSD -

The infinitesimal model of quantitative genetics relies on the Central Limit Theorem to stipulate that under additive models of quantitative traits determined by many loci having similar effect size, the difference between an offspring's genetic trait component and the average of their two parents' genetic trait components is Normally distributed and independent of the parents' values. Here, we investigate how the assumption of similar effect sizes affects the model: in particular, if the tail of the effect size distribution is polynomial with exponent α < 2, then sums of effects should be well-approximated by a "stable distribution", and find tail exponents between 1 and 2 in effect sizes estimated by genome-wide association studies of many human disease-related traits. We show that the independence of offspring trait deviations from parental averages in many cases implies a Gaussian distribution, suggesting that non-Gaussian models of trait evolution must explicitly track the underlying genetics, at least for loci of large effect. We also characterize possible limiting trait distributions of the infinitesimal model with infinitely divisible noise distributions, and compare our results to simulations.

Suggestions

Du même auteur

Assessing the Risk of Cascading COVID-19 Outbreaks from Prison-to-Prison Transfers

Archive ouverte | Parsons, Todd, L | CCSD

International audience. Abstract COVID-19 transmission has been widespread across the California prison system, and at least two of these outbreaks were caused by transfer of infected individuals between prisons. Ri...

Uniform Asymptotic Approximations for the Phase Plane Trajectories of the SIR Model with Vital Dynamics

Archive ouverte | Parsons, Todd, L | CCSD

International audience. We derive accurate, closed-form analytical approximations for the phase-plane trajectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births and death...

Refined Asymptotic Approximations for the Phase Plane Trajectories of the SIR Model with Vital Dynamics

Archive ouverte | Parsons, Todd, L | CCSD

We build on our previous work to derive more accurate analytical approximations for the phase-plane trajectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births and deaths. From our refin...

Chargement des enrichissements...