Foliar uptake of dew in the sandy ecosystem of the Mongolia Plateau: A life-sustaining and carbon accumulation strategy shared differently by C3 and C4 grasses

Archive ouverte

Liu, Meizhen | Cen, Yu | Wang, Chengdong | Gu, Xian | Bowler, Peter | Wu, Dongxiu | Zhang, Lin | Jiang, Gaoming | Beysens, Daniel

Edité par CCSD ; Elsevier Masson -

International audience. Dew is an important source of available water in arid or semi-arid areas and considerable attention has focused upon whether foliar dew uptake occurs. Nonetheless, its occurrence and effects on plant growth in the sand-based ecosystems of the Mongolia Plateau are largely unknown. We performed laboratory experiments and conducted a three-year field investigation of dew in the Hunshandak sandland, northern China. Dew yield was determined by a weighing method. The ecological significance of dew was evaluated by measuring isotopes in the field, leaf water content, photosynthesis and the biomass of drought-stressed plants exposed to dew. Nights producing dew comprised 53% of those between June and October when the atmospheric relative humidity was higher than 80% and wind speed was lower than 4.0 m [see text]. Dew yield averaged 0.15 mm night [see text] and its maximum value was 0.30 mm night [see text]. When exposed to dew, drought-stressed plants increased leaf relative water content and net photosynthetic rate [see text] between 5-76% and 5-240% for C3 plants, and 3–18% and 5–109% for C4 plants. Dew produced more root and total biomass (15–81% and 24–82%) in C4 species than in C3 species (3–28% and 5–25%). Regular dew events on five or more consecutive nights in seven days can sustain C3 species, while C4 species accumulate more carbon resources. This study found that the high dew yield in arenicolous ecosystems was due to the soil matrix and environmental differences in the neighboring steppe ecosystem. C4 species and drought resistant C3 species displayed higher efficiency for dew utilization than the moderately drought resistant C3 species. This may affect the plant community's dynamic and ecological interactions in response to future climate change.

Suggestions

Du même auteur

Vermicomposting with maize increases agricultural benefits by 304 %

Archive ouverte | Guo, Liyue | CCSD

International audience. AbstractPollution of agricultural ecosystems is due to the excessive use of mineral fertilizers and mass discharge of livestock manure. Therefore, there is a need for disposing manure safely,...

The diplomacy discount in global syndicated loans

Archive ouverte | Ambrocio, Gene | CCSD

International audience

Disinfection by hydrogen peroxide at low concentration in air: The key role of condensation. Désinfection par peroxyde d'hydrogène à faible concentration dans l'air : le rôle clé de la condensation

Archive ouverte | Destrez, P. | CCSD

International audience. Gazeous hydrogen peroxide (H2O2 ) is commonly used for disinfection of room surfaces or sterilization of medical devices. Disinfection and sterilization processes are controlled by mean value...

Chargement des enrichissements...