Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials

Archive ouverte

Robert, Pauline | Goudemand, Ellen | Auzanneau, Jérôme | Oury, François-Xavier | Rolland, Bernard | Heumez, Emmanuel | Bouchet, Sophie | Caillebotte, Antoine | Mary-Huard, Tristan | Le Gouis, Jacques | Rincent, Renaud

Edité par CCSD ; Springer Verlag -

International audience. Key message Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G x E). Phenomic selection is supposed to be efficient for modelling the G x E effect because it accounts for non-additive effects. Here, phenomic data are near-infrared (NIR) spectra obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain yield and heading date in different MET scenarios. We also compared different methods to model the G x E using different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar in all different MET scenarios. Better predictive abilities were obtained when G x E effects were modelled with NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for modelling the G x E. To facilitate the implementation of phenomic prediction, we tested MET designs where the NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection is an efficient and practicable prediction method for dealing with G x E.

Suggestions

Du même auteur

Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection

Archive ouverte | Robert, Pauline | CCSD

International audience. Phenomic selection is a promising alternative or complement to genomic selection in wheat breeding. Models combining spectra from different environments maximise the predictive ability of gra...

Identification of factors influencing predictive ability of phenomic selection and comparison to genomic selection in wheat breeding programs

Archive ouverte | Robert, P | CCSD

International audience. In plant breeding, the selection of the best individuals is mainly based on phenotyping records. Because phenotyping is costly and time consuming, predictive tools such as Genomic selection (...

Genome-wide association mapping of three important traits using bread wheat elite breeding populations

Archive ouverte | Bordes, Jacques | CCSD

International audience. The exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.),...

Chargement des enrichissements...