Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice

Archive ouverte

Klein, Arnaud, F | Varela, Miguel, A | Arandel, Ludovic | Holland, Ashling | Naouar, Naira | Arzumanov, Andrey | Seoane, David | Revillod, Lucile | Bassez, Guillaume | Ferry, Arnaud | Jauvin, Dominic | Gourdon, Geneviève | Puymirat, Jack | Gait, Michael, J | Furling, Denis | Wood, Matthew, J A

Edité par CCSD ; American Society for Clinical Investigation -

International audience. Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nuclear-retained mutant transcripts containing CUG expansions (CUGexp). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment of Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patientderived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces high efficacy and long-lasting correction of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide-conjugates for systemic corrective therapy in DM1.

Suggestions

Du même auteur

Low-dose of peptide-conjugate antisense oligonucleotides targeting CUGexp-RNA in murine skeletal muscles normalizes Myotonic Dystrophy 1 phenotype

Archive ouverte | Klein, Arnaud F. | CCSD

International audience. Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including Myotonic Dystrophy type 1 (DM1). DM1 is a dominant...

Systemic Delivery of Peptide-Conjugated Antisense Oligonucleotides Leads to Long-Lasting Correction of Myotonic Dystrophy Type I

Archive ouverte | Klein, Arnaud F. | CCSD

International audience. Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for myotonic dystrophy type 1 (DM1), abolishing the toxic RNA gain-of-function mechani...

Myotonic dystrophy type 1: from DNA repeat expansion and toxic RNA to the development of new therapeutic approaches

Archive ouverte | Gomes-Pereira, Mário | CCSD

International audience

Chargement des enrichissements...