Brain charts for the human lifespan

Archive ouverte

Bethlehem, R. | Seidlitz, J. | White, S. | Vogel, J. | Anderson, K. | Adamson, C. | Adler, S. | Alexopoulos, G. | Anagnostou, E. | Areces-Gonzalez, A. | Astle, D. | Auyeung, B. | Ayub, M. | Bae, J. | Ball, G. | Baron-Cohen, S. | Beare, R. | Bedford, S. | Benegal, V. | Beyer, F. | Blangero, J. | Blesa Cábez, M. | Boardman, J. | Borzage, M. | Bosch-Bayard, J. | Bourke, N. | Calhoun, V. | Chakravarty, M. | Chen, C. | Chertavian, C. | Chetelat, G. | Chong, Y. | Cole, J. | Corvin, A. | Costantino, M. | Courchesne, E. | Crivello, F. | Cropley, V. | Crosbie, J. | Crossley, N. | Delarue, M. | Delorme, Richard | Desrivieres, S. | Devenyi, G. | Di Biase, M. | Dolan, R. | Donald, K. | Donohoe, G. | Dunlop, K. | Edwards, A. | Elison, J. | Ellis, C. | Elman, J. | Eyler, L. | Fair, D. | Feczko, E. | Fletcher, P. | Fonagy, P. | Franz, C. | Galan-Garcia, L. | Gholipour, A. | Giedd, J. | Gilmore, J. | Glahn, D. | Goodyer, I. | Grant, P. | Groenewold, N. | Gunning, F. | Gur, R. | Hammill, C. | Hansson, O. | Hedden, T. | Heinz, A. | Henson, R. | Heuer, K. | Hoare, J. | Holla, B. | Holmes, A. | Holt, R. | Huang, H. | Im, K. | Ipser, J. | Jack, C. | Jackowski, A. | Jia, T. | Johnson, K. | Jones, P. | Jones, D. | Kahn, R. | Karlsson, H. | Karlsson, L. | Kawashima, R. | Kelley, E. | Kern, S. | Kim, K. | Kitzbichler, M. | Kremen, W. | Lalonde, F. | Landeau, B. | Lee, S. | Lerch, J. | Lewis, J. | Li, J. | Liao, W. | Liston, C. | Lombardo, M. | Lv, J. | Lynch, C. | Mallard, T. | Marcelis, M. | Markello, R. | Mathias, S. | Mazoyer, B. | Mcguire, P. | Meaney, M. | Mechelli, A. | Medic, N. | Misic, B. | Morgan, S. | Mothersill, D. | Nigg, J. | Ong, M. | Ortinau, C. | Ossenkoppele, R. | Ouyang, M. | Palaniyappan, L. | Paly, L. | Pan, P. | Pantelis, C. | Park, M. | Paus, T. | Pausova, Z. | Paz-Linares, D. | Pichet Binette, A. | Pierce, K. | Qian, X. | Qiu, J. | Qiu, A. | Raznahan, A. | Rittman, T. | Rodrigue, A. | Rollins, C. | Romero-Garcia, R. | Ronan, L. | Rosenberg, M. | Rowitch, D. | Salum, G. | Satterthwaite, T. | Schaare, H. | Schachar, R. | Schultz, A. | Schumann, G. | Schöll, M. | Sharp, D. | Shinohara, R. | Skoog, I. | Smyser, C. | Sperling, R. | Stein, D. | Stolicyn, A. | Suckling, J. | Sullivan, G. | Taki, Y. | Thyreau, B. | Toro, Roberto | Traut, N. | Tsvetanov, K. | Turk-Browne, N. | Tuulari, J. | Tzourio, C. | Valk, S. | Valdes-Sosa, M. | Villeneuve, S. | Vachon-Presseau, É. | Valdes-Sosa, P. | van Amelsvoort, T. | Vandekar, S. | Vasung, L. | Victoria, L. | Villringer, A. | Vértes, P. | Wagstyl, K. | Wang, Y. | Warfield, S. | Warrier, V. | Westman, E. | Westwater, M. | Whalley, H. | Witte, A. | Yang, N. | Yeo, B. | Yun, H. | Zalesky, A. | Zar, H. | Zettergren, A. | Frisoni, G. | Zhou, J. | Ziauddeen, H. | Zugman, A. | Binette, A. Pichet | Zuo, X. | Rowe, C. | Bullmore, E. | Alexander-Bloch, A.

Edité par CCSD ; Nature Publishing Group -

International audience. Abstract Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight 1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories 2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones 3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.

Suggestions

Du même auteur

Genetic architecture of subcortical brain structures in 38,851 individuals

Archive ouverte | Satizabal, C. L. | CCSD

International audience. Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, br...

Large‐scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents

Archive ouverte | Kurth, F. | CCSD

International audience. Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restri...

Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes. : Cereb Cortex

Archive ouverte | Shin, J. | CCSD

International audience. We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance ...

Chargement des enrichissements...